【題目】已知圓心在軸正半軸上的圓與直線相切,與軸交于兩點(diǎn),且.

(1)求圓的標(biāo)準(zhǔn)方程;

(2)過(guò)點(diǎn)的直線與圓交于不同的兩點(diǎn),若設(shè)點(diǎn)的重心,當(dāng)的面積為時(shí),求直線的方程.

【答案】(1)(2)

【解析】

試題分析:(1)設(shè)圓C的方程為,利用點(diǎn)C到直線5x+12y+21=0的距離為,求出a,即可求圓C的標(biāo)準(zhǔn)方程;(2)利用MNG的面積為,得出||=1,設(shè)A,B,則,即,直線方程與圓的方程聯(lián)立,即可得出結(jié)論

試題解析:(1)由題意知圓心,且,

中,,則,

于是可設(shè)圓的方程為 …………2分

又點(diǎn)到直線的距離為

所以(舍),

故圓的方程為.…………4分

(2)的面積,所以

若設(shè),則,即,…………6分

當(dāng)直線斜率不存在時(shí),不存在,

故可設(shè)直線,代入圓的方程中,

可得,…………8分

,即…………10分

故滿足條件的直線的方程為.…………12分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知分別是直線上的兩個(gè)動(dòng)點(diǎn),線段的長(zhǎng)為的中點(diǎn).

(1)求動(dòng)點(diǎn)的軌跡的方程;

(2)若過(guò)點(diǎn)(1,0)的直線與曲線交于不同兩點(diǎn)

當(dāng)時(shí),求直線的方程;

試問(wèn)在軸上是否存在點(diǎn),使恒為定值?若存在,求出點(diǎn)的坐標(biāo)及定值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,內(nèi)角的對(duì)邊分別為,已知.

(1)求角的值;

(2),當(dāng)取最小值時(shí),求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)為常數(shù),是自然對(duì)數(shù)的底數(shù),曲線在點(diǎn)處的切線與軸平行

1的值;

2的單調(diào)區(qū)間;

3設(shè),其中的導(dǎo)函數(shù)證明:對(duì)任意

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,PA垂直于矩形ABCD所在的平面,E、F分別是AB、PD的中點(diǎn),∠ADP=45°.

(1)求證:AF∥平面PCE.

(2)求證:平面PCD⊥平面PCE.

(3)若AD=2,CD=3,求點(diǎn)F到平面PCE的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,矩形ABCD的一邊AB在x軸上,另一邊CD在x軸上方,且AB=8,BC=6,其中A(-4,0、B4,0

(1若A、B為橢圓的焦點(diǎn),橢圓經(jīng)過(guò)C、D兩點(diǎn),求橢圓的方程;

2若A、B為雙曲線的焦點(diǎn),且雙曲線經(jīng)過(guò)C、D兩點(diǎn),求雙曲線的方程;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知橢圓的離心率,左頂點(diǎn)為,過(guò)點(diǎn)作斜率為的直線交橢圓于點(diǎn),交軸于點(diǎn).

(1)求橢圓的方程;

(2)已知的中點(diǎn),存在定點(diǎn),使得對(duì)于任意的都有,求點(diǎn)的坐標(biāo);

(3)若過(guò)點(diǎn)作直線的平行線交橢圓于點(diǎn),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正四面體的頂點(diǎn)、、分別在兩兩垂直的三條射線, , 上,則在下列命題中,錯(cuò)誤的是( )

A. 是正三棱錐

B. 直線與平面相交

C. 直線與平面所成的角的正弦值為

D. 異面直線所成角是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校學(xué)生社團(tuán)心理學(xué)研究小組在對(duì)學(xué)生上課注意力集中情況的調(diào)查研究中,發(fā)現(xiàn)其在40分鐘的一節(jié)課中,注意力指數(shù)與聽(tīng)課時(shí)間(單位:分鐘)之間的關(guān)系滿足如圖所示的曲線.當(dāng)時(shí),曲線是二次函數(shù)圖象的一部分,當(dāng)時(shí),曲線是函數(shù)圖象的一部分.根據(jù)專家研究,當(dāng)注意力指數(shù)大于80時(shí)學(xué)習(xí)效果最佳.

(1)試求的函數(shù)關(guān)系式;

(2)教師在什么時(shí)段內(nèi)安排核心內(nèi)容,能使得學(xué)生學(xué)習(xí)效果最佳?請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案