【題目】如圖,四棱錐PABCD中,AB=AD=2BC=2,BCAD,ABAD,△PBD為正三角形.且PA=2

1)證明:平面PAB⊥平面PBC

2)若點(diǎn)P到底面ABCD的距離為2,E是線段PD上一點(diǎn),且PB∥平面ACE,求四面體A-CDE的體積.

【答案】(1)見解析;(2)

【解析】

1)證明ABPBABBC,推出AB⊥平面PBC,然后即可證明平面PAB⊥平面PBC

2)設(shè)BD,AC交于點(diǎn)O,連接OE,點(diǎn)P到平面ABCD的距離為2,點(diǎn)E到平面ABCD的距離為h==,通過VA-CDE=VE-CDA,轉(zhuǎn)化求解四面體A-CDE的體積.

1,且,,

為正三角形,,又,

,,又,,

平面,又平面,

平面平面

2)如圖,設(shè),交于點(diǎn),

,,連接

平面,,則,

又點(diǎn)到平面的距離為2

點(diǎn)到平面的距離為,

即四面體的體積為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為迎接2018年省運(yùn)會(huì),寧德市某體育館需要重新鋪設(shè)塑膠跑道.已知每毫米厚的跑道的鋪設(shè)成本為10萬元,跑道平均每年的維護(hù)費(fèi)C(單位:萬元)與跑道厚度x(單位:毫米)的關(guān)系為Cx=,x[10,15].若跑道厚度為10毫米,則平均每年的維護(hù)費(fèi)需要9萬元.設(shè)總費(fèi)用fx)為跑道鋪設(shè)費(fèi)用與10年維護(hù)費(fèi)之和.

(1)求k的值與總費(fèi)用fx)的表達(dá)式;

(2)塑膠跑道鋪設(shè)多厚時(shí),總費(fèi)用fx)最小,并求最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)集合,.

(1),求實(shí)數(shù)的值;

(2),求實(shí)數(shù)的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,.

1)解關(guān)于的方程;

2)設(shè)時(shí),對(duì)任意總有成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知?jiǎng)狱c(diǎn)P與兩個(gè)定點(diǎn)O(0,0),A(3,0)的距離的比值為2,點(diǎn)P的軌跡為曲線C.

(1)求曲線C的軌跡方程

(2)過點(diǎn)(﹣1,0)作直線與曲線C交于A,B兩點(diǎn),設(shè)點(diǎn)M坐標(biāo)為(4,0),求△ABM面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知分別是雙曲線的左、右焦點(diǎn),過點(diǎn)作垂直與軸的直線交雙曲線于,兩點(diǎn),若為銳角三角形,則雙曲線的離心率的取值范圍是_______

【答案】

【解析】

根據(jù)雙曲線的通徑求得點(diǎn)的坐標(biāo),將三角形為銳角三角形,轉(zhuǎn)化為,即,將表達(dá)式轉(zhuǎn)化為含有離心率的不等式,解不等式求得離心率的取值范圍.

根據(jù)雙曲線的通徑可知,由于三角形為銳角三角形,結(jié)合雙曲線的對(duì)稱性可知,故,即,即,解得,故離心率的取值范圍是.

【點(diǎn)睛】

本小題主要考查雙曲線的離心率的取值范圍的求法,考查雙曲線的通徑,考查雙曲線的對(duì)稱性,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.本小題的主要突破口在將三角形為銳角三角形,轉(zhuǎn)化為,利用列不等式,再將不等式轉(zhuǎn)化為只含離心率的表達(dá)式,解不等式求得雙曲線離心率的取值范圍.

型】填空
結(jié)束】
17

【題目】已知命題:方程有兩個(gè)不相等的實(shí)數(shù)根;命題:不等式的解集為.若為真,為假,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線Cy2=2pxp0的焦點(diǎn)為F,過F且斜率為的直線l與拋物線C交于AB兩點(diǎn),Bx軸的上方,且點(diǎn)B的橫坐標(biāo)為4

1)求拋物線C的標(biāo)準(zhǔn)方程;
2)設(shè)點(diǎn)P為拋物線C上異于A,B的點(diǎn),直線PAPB分別交拋物線C的準(zhǔn)線于E,G兩點(diǎn),x軸與準(zhǔn)線的交點(diǎn)為H,求證:HGHE為定值,并求出定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某沿海城市的海邊有兩條相互垂直的直線型公路l1、l2,海岸邊界MPN近似地看成一條曲線段.為開發(fā)旅游資源,需修建一條連接兩條公路的直線型觀光大道AB,且直線AB與曲線MPN有且僅有一個(gè)公共點(diǎn)P(即直線與曲線相切),如圖所示.若曲線段MPN是函數(shù)圖象的一段,點(diǎn)M到l1、l2的距離分別為8千米和1千米,點(diǎn)N到l2的距離為10千米,以l1、l2分別為x、y軸建立如圖所示的平面直角坐標(biāo)系xOy,設(shè)點(diǎn)P的橫坐標(biāo)為p.

(1)求曲線段MPN的函數(shù)關(guān)系式,并指出其定義域;

(2)若某人從點(diǎn)O沿公路至點(diǎn)P觀景,要使得沿折線OAP比沿折線OBP的路程更近,求p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某面包推出一款新面包,每個(gè)面包的成本價(jià)為4元,售價(jià)為10元,該款面包當(dāng)天只出一爐(一爐至少15個(gè),至多30個(gè)),當(dāng)天如果沒有售完,剩余的面包以每個(gè)2元的價(jià)格處理掉,為了確定這一爐面包的個(gè)數(shù),該店記錄了這款新面包最近30天的日需求量(單位:個(gè)),整理得下表:

(1)根據(jù)表中數(shù)據(jù)可知,頻數(shù)與日需求量(單位:個(gè))線性相關(guān),求關(guān)于的線性回歸方程;

(2)以30天記錄的各日需求量的頻率代替各日需求量的概率,若該店這款新面包出爐的個(gè)數(shù)為24,記當(dāng)日這款新面包獲得的總利潤(rùn)為(單位:元).

(ⅰ)若日需求量為15個(gè),求

(ⅱ)求的分布列及其數(shù)學(xué)期望.

相關(guān)公式: ,

查看答案和解析>>

同步練習(xí)冊(cè)答案