【題目】已知函數(shù),(,是自然對數(shù)的底數(shù)).

1)討論的單調(diào)性;

2)當(dāng)時,,求的取值范圍.

【答案】1)分類討論,詳見解析;(2.

【解析】

1)求得,然后對分成兩種情況進(jìn)行分類討論,由此求得的單調(diào)區(qū)間.

2)首先令,代入,求得的一個取值范圍.構(gòu)造函數(shù),利用的導(dǎo)函數(shù)研究的最小值,由此求得的取值范圍.

1,

當(dāng)時,,函數(shù)上遞減;

當(dāng)時,由,解得,故函數(shù)上單調(diào)遞減,

,解得,故函數(shù)上單調(diào)遞增.

綜上所述,當(dāng)時,上遞減;當(dāng)時,上遞減,在上遞增.

2)當(dāng)時,

,故

,

,則當(dāng)時,,

函數(shù)上單調(diào)遞增,

當(dāng)時,

,

當(dāng)時,單調(diào)遞增,

,符合題意;

,則

,

,

存在,使得,

且當(dāng)時,,

上單調(diào)遞減,

當(dāng)時,,不合題意,

綜上,實(shí)數(shù)的取值范圍為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】國慶節(jié)來臨,某公園為了豐富廣大人民群眾的業(yè)余生活,特地以我們都是中國人為主題舉行猜謎語競賽.現(xiàn)有兩類謎語:一類叫事物謎,就是我們常說的謎語;另一類叫文義謎,也就是我們常說的燈謎,共8道題,其中事物謎4道題,文義謎4道題,孫同學(xué)從中任取3道題解答.

1)求孫同學(xué)至少取到2道文義謎題的概率;

2)如果孫同學(xué)答對每道事物謎題的概率都是,答對每道文義謎題的概率都是,且各題答對與否相互獨(dú)立,已知孫同學(xué)恰好選中2道事物謎題,1道文義謎題,用表示孫同學(xué)答對題的個數(shù),求隨機(jī)變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,平面,底面四邊形是菱形,點(diǎn)O是對角線的交點(diǎn),M的中點(diǎn),連接

1)證明:平面;

2)證明:平面平面;

3)當(dāng)三棱錐的體積等于時,求的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),(其中是自然對數(shù)的底數(shù)),,

1)討論函數(shù)的單調(diào)性;

2)設(shè)函數(shù),若對任意的恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的右焦點(diǎn)為,原點(diǎn)為,橢圓的動弦過焦點(diǎn)且不垂直于坐標(biāo)軸,弦的中點(diǎn)為,過且垂直于線段的直線交射線于點(diǎn)

(1)證明:點(diǎn)在定直線上;

(2)當(dāng)最大時,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】端午節(jié)是我國民間為紀(jì)念愛國詩人屈原的一個傳統(tǒng)節(jié)日.某市為了解端午節(jié)期間粽子的銷售情況,隨機(jī)問卷調(diào)查了該市1000名消費(fèi)者在去年端午節(jié)期間的粽子購買量(單位:克),所得數(shù)據(jù)如下表所示:

購買量

人數(shù)

100

300

400

150

50

將煩率視為概率

1)試求消費(fèi)者粽子購買量不低于300克的概率;

2)若該市有100萬名消費(fèi)者,請估計(jì)該市今年在端午節(jié)期間應(yīng)準(zhǔn)備多少千克棕子才能滿足市場需求(以各區(qū)間中點(diǎn)值作為該區(qū)間的購買量).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若存在一個實(shí)數(shù),使得成立,則稱為函數(shù)的一個不動點(diǎn),設(shè)函數(shù) 為自然對數(shù)的底數(shù)),定義在上的連續(xù)函數(shù)滿足,且當(dāng)時, .若存在,且為函數(shù)的一個不動點(diǎn),則實(shí)數(shù)的取值范圍為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),則下列判斷中是真命題的有( ).

;②是偶函數(shù);③對于任意一個非零有理數(shù),,;④存在三個點(diǎn),,,使得為等邊三角形.

A.①②③B.①②③④C.①③④D.②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中常數(shù)

1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間.

2)設(shè)定義在上的函數(shù)在點(diǎn)處的切線方程為.當(dāng)時,若內(nèi)恒成立,則稱為函數(shù)類對稱點(diǎn).當(dāng)時,是否存在類對稱點(diǎn)?若存在,請求出一個類對稱點(diǎn)的橫坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案