【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù));以原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(Ⅰ)求曲線的普通方程與曲線的直角坐標(biāo)方程;
(Ⅱ)若把曲線各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的倍,縱坐標(biāo)變?yōu)樵瓉?lái)的,得到曲線,求曲線的方程;
(Ⅲ)設(shè)為曲線上的動(dòng)點(diǎn),求點(diǎn)到曲線上點(diǎn)的距離的最小值,并求此時(shí)點(diǎn)的坐標(biāo).
【答案】(Ⅰ),.
(Ⅱ).
(Ⅲ) ,此時(shí) 的坐標(biāo)為.
【解析】分析:(Ⅰ)直接消參得到直角坐標(biāo)方程,利用極坐標(biāo)公式把極坐標(biāo)化成直角坐標(biāo)方程.( Ⅱ)利用伸縮變換公式求曲線的方程.( Ⅲ) 設(shè)橢圓上的點(diǎn),再求d的表達(dá)式,最后利用三角函數(shù)的圖像性質(zhì)求點(diǎn)到曲線上點(diǎn)的距離的最小值,并求此時(shí)點(diǎn)的坐標(biāo).
詳解:(Ⅰ)由曲線:()得(為參數(shù)),
∴,
即為曲線的普通方程.
由曲線 ,得,
∴即為的直角坐標(biāo)方程.
(Ⅱ)依題意,設(shè)是曲線上任意一點(diǎn),對(duì)應(yīng)曲線上的點(diǎn)為,
則有, ∴ .
∵ : ,∴.
即所求曲線的方程為.
(Ⅲ)易知,橢圓與直線無(wú)公共點(diǎn),設(shè)橢圓上的點(diǎn),
從而點(diǎn)到直線的距離為
∴當(dāng)時(shí),,
此時(shí),,∴點(diǎn)的坐標(biāo)為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為調(diào)查某地區(qū)老人是否需要志愿者提供幫助,用簡(jiǎn)單隨機(jī)抽樣方法從該地區(qū)調(diào)查了500位老年人,結(jié)果如下:
性別 是否需要志愿者 | 男 | 女 |
需要 | 40 | 30 |
不需要 | 160 | 270 |
(1)估計(jì)該地區(qū)老年人中,需要志愿者提供幫助的老年人的比例;
(2)請(qǐng)根據(jù)上面的數(shù)據(jù)分析該地區(qū)的老年人需要志愿者提供幫助與性別有關(guān)嗎
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程是(為參數(shù)),以該直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)寫(xiě)出曲線的普通方程和直線的直角坐標(biāo)方程;
(2)設(shè)點(diǎn),直線與曲線相交于兩點(diǎn),且,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),在區(qū)間內(nèi)任取兩個(gè)實(shí)數(shù),,且,若不等式恒成立,則實(shí)數(shù)的取值范圍是
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合A={x|3≤x<7},B={x|2<x<10},C={x|x<a},全集U=R
(1)求A∪B;
(2)若,求實(shí)數(shù)a的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=ln(x+a)+x2
(1)若當(dāng)x=﹣1時(shí),f(x)取得極值,求a的值,并討論f(x)的單調(diào)性;
(2)若f(x)存在極值,求a的取值范圍,并證明所有極值之和大于 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an},{bn},滿足a1=b1=3,an+1﹣an= =3,n∈N* , 若數(shù)列{cn}滿足cn= ,則c2017=( )
A.92016
B.272016
C.92017
D.272017
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知兩直線l1:ax-by+4=0,l2:(a-1)x+y+b=0.求分別滿足下列條件的a,b的值:
(1)直線l1過(guò)點(diǎn)(-3,-1),并且直線l1與l2垂直;則a=____,b=_______
(2)直線l1與直線l2平行,并且直線l2在y軸上的截距為3.則a=____,b=_______
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com