【題目】在平面直角坐標系xOy中,動點Px,y)的坐標滿足t為參數(shù)),以原點O為極點,x正半軸為極軸建立極坐標系,曲線l的極坐標方程為ρsinθ+φ)=cosφ(其中φ為常數(shù),且φ

1)求動點P的軌跡C的極坐標方程;

2)設直線l與軌跡C的交點為A,B,兩點,求證:當φ變化時,∠AOB的大小恒為定值.

【答案】(1)ρ(2)證明見解析

【解析】

1)將動點Px,y)的參數(shù)方程化簡為普通方程,再轉化為極坐標方程得到答案。

2)將直線l與曲線C聯(lián)立,消去ρsinθ+φ)=cosφ,化簡得到tan2θ+tanφtanθ10,利用韋達定理計算得到答案。

1)∵動點Px,y)的坐標滿足t為參數(shù)),

∴動點P的軌跡C的普通方程為yx2,又由xρcosθyρsinθ,∴為sinθρcos2θ

∴動點P的軌跡C的極坐標方程為sinθρcos2θ,即ρ

2)證明:將直線l與曲線C聯(lián)立,消去ρsinθ+φ)=cosφ,

∴得sinθcosφ+cosθsinφ)=cosφ,∵φ,∴cosφ≠0,

tan2θ+tanφtanθ10,

Aρ1,θ1),Bρ2,θ2),由韋達定理得tanθ1tanθ2=﹣1,即sinθ1sinθ2=﹣cosθ1cosθ2,

cosθ1cosθ2+sinθ1sinθ2cosθ1θ2)=0,

θ1θ2kZ

故當φ變化時,∠AOB的大小恒為定值.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)),是自然對數(shù)的底數(shù).

(1)當時,求的單調增區(qū)間;

(2)若對任意的,),求的最大值;

(3)若的極大值為,求不等式的解集.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)a(x1)lnx(aR),g(x)(1x)ex.

1)討論函數(shù)f(x)的單調性;

2)若對任意給定的x0[1,1],在區(qū)間(0,e]上總存在兩個不同的xi(i1,2),使得f(xi)g(x0)成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2019年春節(jié)期間,當紅影視明星翟天臨“不知”“知網(wǎng)”學術不端事件在全國鬧得沸沸揚揚,引發(fā)了網(wǎng)友對亞洲最大電影學府北京電影學院乃至整個中國學術界高等教育亂象的反思.為進一步端正學風,打擊學術造假行為,教育部日前公布的2019年部門預算中透露,2019年教育部擬抽檢博士學位論文約篇,預算為萬元.國務院學位委員會、教育部2014年印發(fā)的《博士碩士學位論文抽檢辦法》通知中規(guī)定:每篇抽檢的學位論文送位同行專家進行評議,位專家中有位以上(含位)專家評議意見為“不合格”的學位論文,將認定為“存在問題學位論文”;有且只有位專家評議意見為“不合格”的學位論文,將再送位同行專家進行復評. 位復評專家中有位以上(含位)專家評議意見為“不合格”的學位論文,將認定為“存在問題學位論文”設每篇學位論文被每位專家評議為“不合格”的概率均為且各篇學位論文是否被評議為“不合格”相互獨立.

(1)相關部門隨機地抽查了位博士碩士的論文,每人一篇,抽檢是否合格,抽檢得到的部分數(shù)據(jù)如下表所示:

合格

不合格

博士學位論文

碩士學位論文

通過計算說明是否有的把握認為論文是否合格與作者的學位高低有關系?

(2)若,記一篇抽檢的學位論文被認定為“存在問題學位論文”的概率為,求的值;

(3)若擬定每篇抽檢論文不需要復評的評審費用為元,需要復評的評審費用為元;除評審費外,其他費用總計為萬元現(xiàn)以此方案實施,且抽檢論文為篇,問是否會超過預算?并說明理由.

臨界值表:

參考公式,其中

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖1,等腰梯形ABCD中,,,OBE中點,FBC中點.將沿BE折起到的位置,如圖2.

1)證明:平面;

2)若平面平面BCDE,求點F到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于函數(shù)(其中):①若函數(shù)的一個對稱中心到與它最近一條對稱軸的距離為,則;②若函數(shù)上單調遞增,則的范圍為;③若,則在點處的切線方程為 ;④若,,則的最小值為;⑤若,則函數(shù)的圖象向右平移個單位可以得到函數(shù)的圖象.其中正確命題的序號有_______.(把你認為正確的序號都填上)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,傾斜角為的直線的參數(shù)方程為為參數(shù)).在以坐標原點為極點,軸正半軸為極軸的極坐標系中,曲線的極坐標方程為.

(1)求直線的普通方程與曲線的直角坐標方程;

(2)若直線與曲線交于兩點,且,求直線的傾斜角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某城市為了解游客人數(shù)的變化規(guī)律,提高旅游服務質量,收集并整理了20141月至201612月期間月接待游客量(單位:萬人)的數(shù)據(jù),繪制了如圖所示的折線圖.根據(jù)該折線圖,下列結論錯誤的是(

A.月接待游客量逐月增加

B.年接待游客量逐年增加

C.各年的月接待游客量高峰期大致在7,8

D.各年1月至6月的月接待游客量相對于7月至12月,波動性更小,變化比較平穩(wěn)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知正方體有8個不同頂點,現(xiàn)任意選擇其中4個不同頂點,然后將它們兩兩相連,可組成平面圖形成空間幾何體.在組成的空間幾何體中,可以是下列空間幾何體中的________.(寫出所有正確結論的編號)

①每個面都是直角三角形的四面體;

②每個面都是等邊三角形的四面體;

③每個面都是全等的直角三角形的四面體;

④有三個面為等腰直角三角形,有一個面為等邊三角形的四面體.

查看答案和解析>>

同步練習冊答案