【題目】已知橢圓C: 的右頂點(diǎn)A(2,0),且過點(diǎn)
(1)求橢圓C的方程;
(2)過點(diǎn)B(1,0)且斜率為k1(k1≠0)的直線l于橢圓C相交于E,F(xiàn)兩點(diǎn),直線AE,AF分別交直線x=3于M,N兩點(diǎn),線段MN的中點(diǎn)為P,記直線PB的斜率為k2 , 求證:k1k2為定值.
【答案】
(1)解:由題意可得a=2, + =1,
a2﹣b2=c2,
解得b=1,
即有橢圓方程為 +y2=1;
(2)證明:設(shè)過點(diǎn)B(1,0)的直線l方程為:y=k1(x﹣1),
由 ,
可得:(4k12+1)x2﹣8k12x+4k12﹣4=0,
因?yàn)辄c(diǎn)B(1,0)在橢圓內(nèi),所以直線l和橢圓都相交,
即△>0恒成立.
設(shè)點(diǎn)E(x1,y1),F(xiàn)(x2,y2),
則x1+x2= ,x1x2= .
因?yàn)橹本AE的方程為:y= (x﹣2),
直線AF的方程為:y= (x﹣2),
令x=3,得M(3, ),N(3, ),
所以點(diǎn)P的坐標(biāo)(3, ( + )).
直線PB的斜率為k2= = ( + )
= =
= =﹣ .
所以k1k2為定值﹣ .
【解析】(1)由題意可得a=2,代入點(diǎn) ,解方程可得橢圓方程;(2)設(shè)過點(diǎn)B(1,0)的直線l方程為:y=k(x﹣1),由 ,可得(4k12+1)x2﹣8k12x+4k12﹣4=0,由已知條件利用韋達(dá)定理推導(dǎo)出直線PB的斜率k2=﹣ ,由此能證明kk′為定值﹣ .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)的一段圖象如右圖所示:
(1)求函數(shù)的解析式及其最小正周期;
(2)求使函數(shù)取得最大值的自變量的集合及最大值;
(3)求函數(shù)在的單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=lnx+ (a>0).
(1)求函數(shù)f(x)在[1,+∞)上的最小值;
(2)若存在三個(gè)不同的實(shí)數(shù)xi(i=1,2,3)滿足f(x)=ax.
(i)證明:a∈(0,1),f( )> ;
(ii)求實(shí)數(shù)a的取值范圍及x1x2x3的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓x2+y2=8內(nèi)有一點(diǎn)P(-1,2),AB為過點(diǎn)P且傾斜角為α的弦.
(1)當(dāng)弦AB被點(diǎn)P平分時(shí),求直線AB的方程;
(2)求過點(diǎn)P的弦的中點(diǎn)M的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】四棱錐P-ABCD中,AD⊥面PAB,BC⊥面PAB,底面ABCD為梯形,AD=4,BC=8,AB=6,∠APD=∠CPB,滿足上述條件的四棱錐的頂點(diǎn)P的軌跡是( 。
A. 圓的一部分 B. 橢圓的一部分
C. 球的一部分 D. 拋物線的一部分
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義 為n個(gè)正數(shù)p1 , p2 , …,pn的“均倒數(shù)”,若已知數(shù)列{an},的前n項(xiàng)的“均倒數(shù)”為 ,又bn= ,則 + +…+ =( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=log2(x+a).
(Ⅰ)當(dāng)a=1時(shí),若f(x)+f(x-1)>0成立,求x的取值范圍;
(Ⅱ)若定義在R上奇函數(shù)g(x)滿足g(x+2)=-g(x),且當(dāng)0≤x≤1時(shí),g(x)=f(x),求g(x)在[-3,-1]上的解析式,并寫出g(x)在[-3,3]上的單調(diào)區(qū)間(不必證明);
(Ⅲ)對(duì)于(Ⅱ)中的g(x),若關(guān)于x的不等式g()≥g(-)在R上恒成立,求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是正方形,E、F分別為PC、BD的中點(diǎn),側(cè)面PAD⊥底面ABCD.
(1)求證:EF∥平面PAD;
(2)若EF⊥PC,求證:平面PAB⊥平面PCD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在R上的函數(shù)f(x)=x2+5,記a=f(﹣log25),b=f(log23),c=f(﹣1),則a,b,c的大小關(guān)系為( )
A.c<b<a
B.a<c<b
C.c<a<b
D.a<b<c
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com