【題目】定義 為n個正數(shù)p1 , p2 , …,pn的“均倒數(shù)”,若已知數(shù)列{an},的前n項的“均倒數(shù)”為 ,又bn= ,則 + +…+ =(
A.
B.
C.
D.

【答案】C
【解析】解:∵數(shù)列{an}的前n項的“均倒數(shù)”為 ,
= ,∴ ,
∴a1=S1=5,
n≥2時,an=Sn﹣Sn1=(5n2)﹣[5(n﹣1)2]=10n﹣5,
n=1時,上式成立,
∴an=10n﹣5,
∴bn= =2n﹣1, = = ),
+ +…+
= (1﹣ +…+
=
=
故選:C.
【考點精析】利用數(shù)列的前n項和對題目進行判斷即可得到答案,需要熟知數(shù)列{an}的前n項和sn與通項an的關系

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知等比數(shù)列{an}的前n項和為Sn , a1= ,公比q>0,S1+a1 , S3+a3 , S2+a2成等差數(shù)列.
(1)求an;
(2)設bn= ,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校高三2班有48名學生進行了一場投籃測試,其中男生28人,女生20人.為了了解其投籃成績,甲、乙兩人分別對全班的學生進行編號(1~48號),并以不同的方法進行數(shù)據(jù)抽樣,其中一人用的是系統(tǒng)抽樣,一人用的是分層抽樣.若此次投籃考試的成績大于等于80分視為優(yōu)秀,小于80分視為不優(yōu)秀,以下是甲、乙兩人分別抽取的樣本數(shù)據(jù):

抽取的樣本數(shù)據(jù)中任取兩名同學投籃成績,記“抽到投籃成績優(yōu)秀”的數(shù)為X,求X的分布列和數(shù)學期望;
)請你根據(jù)抽取的樣本數(shù)據(jù)完成下列2×2列聯(lián)表,判斷是否有95%以上的把握認為投籃成績和性別有關?

)判斷甲、乙各用何種抽樣方法,并根據(jù)()的結論判斷哪種抽樣方法更優(yōu)?說明理由.

下面的臨界值表供參考:

0.15

0.10

0.05

0.010

0.005

0.001

2.072

2.706

3.841

6.635

7.879

10.828

(參考公式:,其中

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,等邊三角形的中線與中位線相交于,已知旋轉(zhuǎn)過程中的一個圖形,下列命題中,錯誤的是

A. 恒有

B. 異面直線不可能垂直

C. 恒有平面⊥平面

D. 動點在平面上的射影在線段

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C: 的右頂點A(2,0),且過點
(1)求橢圓C的方程;
(2)過點B(1,0)且斜率為k1(k1≠0)的直線l于橢圓C相交于E,F(xiàn)兩點,直線AE,AF分別交直線x=3于M,N兩點,線段MN的中點為P,記直線PB的斜率為k2 , 求證:k1k2為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】平面直角坐標系中,在x軸的上方作半徑為1的圓Γ,與x軸相切于坐標原點O.平行于x軸的直線l1y軸交點的縱坐標為-1,Axy)是圓Γ外一動點,A與圓Γ上的點的最小距離比Al1的距離小1.

(Ⅰ)求動點A的軌跡方程;

(Ⅱ)設l2是圓Γ平行于x軸的切線,試探究在y軸上是否存在一定點B,使得以AB為直徑的圓截直線l2所得的弦長不變.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合A={x|x2-ax+a2-13=0},B={x|x2-4x+3=0},C={x|x2—3x=0}.

(1)若A∩B=AB,求a的值;

(2)若,a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的一個對稱中心為,其圖像上相鄰兩個最高點間的距離為.

(1)求函數(shù)的解析式;

(2)用“五點作圖法”在給定的坐標系中作出函數(shù)在一個周期內(nèi)的圖像,并寫出函數(shù)的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系xOy中,圓C的參數(shù)方程為(α為參數(shù)),以坐標原點O為極點,以x軸正半軸為極軸,建立極坐標系.

(1)寫出圓C的極坐標方程及圓心C的極坐標;

(2)直線l的極坐標方程為與圓C交于M,N兩點,求CMN的面積.

查看答案和解析>>

同步練習冊答案