直線y=kx+3與圓(x-3)2+(y-2)2=4相交于M,N兩點,若|MN|≥2
3
,則k的取值范圍是( 。
分析:根據(jù)|MN|≥2
3
,由弦長公式得,圓心到直線的距離小于或等于1,從而可得不等式,即可求得結論.
解答:解:∵|MN|≥2
3

∴由弦長公式得,圓心到直線的距離小于或等于1,
|3k-2+3|
k2+1
≤1,
∴8k(k+
3
4
)≤0,
∴-
3
4
≤k≤0,
故選D.
點評:本題考查直線與圓的位置關系,考查點到直線距離公式的運用,考查學生的計算能力,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

直線y=kx+3與圓(x-2)2+(y-3)2=4相交于M,N兩點,若|MN|≥2
3
,則k的取值范圍是( 。
A、[-
3
4
,0]
B、[-
3
3
,
3
3
]
C、[-
3
,
3
]
D、[-
2
3
,0]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

直線y=kx+3與圓(x-2)2+(y-3)2=4相交于M,N兩點,若|MN|≥2
2
,則k的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

直線y=kx+3與圓(x-2)2+(y-3)2=4相交于M,N兩點,若|MN|≥2
3
,則k的取值范圍是
[-
3
3
3
3
]
[-
3
3
3
3
]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

直線y=kx+3與圓(x-2)2+(y-3)2=4相交于A,B兩點,若|AB|=2
3
,則k=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線y=kx+3與圓(x-2)2+(y-3)2=4相交于M,N兩點,若|MN|≥2
3
,則k的取值范圍為( 。

查看答案和解析>>

同步練習冊答案