【題目】某市政府為了實施政府績效管理、創(chuàng)新政府公共服務(wù)模式、提高公共服務(wù)效率.實施了“政府承諾,等你打分”民意調(diào)查活動,通過問卷調(diào)查了學(xué)生、在職人員、退休人員共250人,統(tǒng)計結(jié)果表不幸被污損,如表:

學(xué)生

在職人員

退休人員

滿意

78

不滿意

5

12

若在所調(diào)查人員中隨機(jī)抽取1人,恰好抽到學(xué)生的概率為0.32.
(1)求滿意學(xué)生的人數(shù);
(2)現(xiàn)用分層抽樣的方法在所調(diào)查的人員中抽取25人,則在職人員應(yīng)抽取多少人?
(3)若滿意的在職人員為77,則從問卷調(diào)查中填寫不滿意的“學(xué)生和在職人員”中選出2人進(jìn)行訪談,求這2人中包含了兩類人員的概率.

【答案】
(1)解:設(shè)滿意學(xué)生的人數(shù)為x,

依題意得 =0.32,

解得x=75.


(2)解:∵學(xué)生人數(shù)為75+5=80,退休人員人數(shù)為78+12=90,

∴在職人員人數(shù)為250﹣80﹣90=80,

∴用分層抽樣的方法在所調(diào)查的人員中抽取25人,

則在職人員應(yīng)抽取:80× =8人.


(3)解:∵滿意的在職人員為77,∴不滿意的在職人員為80﹣77=3人,

從問卷調(diào)查中填寫不滿意的“學(xué)生和在職人員”中選出2人進(jìn)行訪談,

基本事件總數(shù)n= =28,

這2人中包含了兩類人員包含的基本事件個數(shù)m= =15,

∴這2人中包含了兩類人員的概率p=


【解析】(1)設(shè)滿意學(xué)生的人數(shù)為x,依題意得 =0.32,由此能求出滿意學(xué)生的人數(shù).(2)由學(xué)生人數(shù)為80,退休人員人數(shù)為90,得在職人員人數(shù)為80,由此能求出用分層抽樣的方法在所調(diào)查的人員中抽取25人,在職人員應(yīng)抽取的人數(shù).(3)由滿意的在職人員為77,得不滿意的在職人員為3人,由此能求出從問卷調(diào)查中填寫不滿意的“學(xué)生和在職人員”中選出2人進(jìn)行訪談,這2人中包含了兩類人員的概率.
【考點精析】通過靈活運(yùn)用分層抽樣,掌握先將總體中的所有單位按照某種特征或標(biāo)志(性別、年齡等)劃分成若干類型或?qū)哟,然后再在各個類型或?qū)哟沃胁捎煤唵坞S機(jī)抽樣或系用抽樣的辦法抽取一個子樣本,最后,將這些子樣本合起來構(gòu)成總體的樣本即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知A(x1 , f(x1),B(x2 , f(x2))是函數(shù)f(x)=2sin(ωx+φ)(ω>0,﹣ <φ<0)圖象上的任意兩點,且初相φ的終邊經(jīng)過點P(1,﹣ ),若|f(x1)﹣f(x2)|=4時,|x1﹣x2|的最小值為
(1)求函數(shù)f(x)的解析式;
(2)當(dāng)x∈[0, ]時,求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(3)當(dāng)x∈[0, ]時,不等式mf(x)+2m≥f(x)恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x(lnx﹣ax)有兩個極值點,則實數(shù)a的取值范圍是(
A.(﹣∞,0)
B.(0,
C.(0,1)
D.(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四棱錐P﹣ABCD中,底面ABCD是邊長為2的菱形,側(cè)面PAD⊥底面ABCD,∠BCD=60°,PA=PD= ,E是BC中點,點Q在側(cè)棱PC上.
(1)求證:AD⊥PB;
(2)若Q是PC中點,求二面角E﹣DQ﹣C的余弦值;
(3)若 ,當(dāng)PA∥平面DEQ時,求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩位“準(zhǔn)笑星”在“信陽笑星”選拔賽中,5位評委給出的評分情況如圖所示,記甲、乙兩人的平均得分分別為 、 ,記甲、乙兩人得分的標(biāo)準(zhǔn)差分別為s1、s2 , 則下列判斷正確的是( )

A. ,s1<s2
B. ,s1>s2
C. ,s1<s2
D. ,s1>s2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,某商業(yè)中心O有通往正東方向和北偏東30方向的兩條街道,某公園P位于商業(yè)中心北偏東角(),且與商業(yè)中心O的距離為公里處,現(xiàn)要經(jīng)過公園P修一條直路分別與兩條街道交匯于A,B兩處。

(1)當(dāng)AB沿正北方向時,試求商業(yè)中心到A,B兩處的距離和;

(2)若要使商業(yè)中心O到A,B兩處的距離和最短,請確定A,B的最佳位置。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知F1、F2分別為雙曲線 (a>0,b>0)的左、右焦點,若雙曲線左支上存在一點P使得 =8a,則雙曲線的離心率的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓E: =1(a>b>0)過點(1, ),左右焦點為F1、F2 , 右頂點為A,上頂點為B,且|AB|= |F1F2|.
(1)求橢圓E的方程;
(2)直線l:y=﹣x+m與橢圓E交于C、D兩點,與以F1、F2為直徑的圓交于M、N兩點,且 = ,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知c>0,設(shè)命題p:函數(shù)y=cx為減函數(shù);命題q:當(dāng)x∈[ ,2]時,函數(shù)f(x)=x+ 恒成立,如果p∨q為真命題,p∧q為假命題,求c的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案