定義平面向量之間的一種運(yùn)算“⊙”如下:對(duì)任意的a=(m,n),b=(p,q),令abmqnp.在下面的說法中錯(cuò)誤的有             .

①若ab共線,則ab=0;②abba;③對(duì)任意的λ∈R,有(λa)⊙bλ(ab)

④(ab)2+(a·b)2=|a|2|b|2

 

【答案】

(  ② )

【解析】若a=(mn)與b=(p,q)共線,則mqnp=0,依運(yùn)算“⊙”知ab=0,故①正確;由于abmqnp,又banpmq,因此ab=-ba,故②不正確;對(duì)于③,由于λa=(λmλn),因此(λa)⊙bλmqλnp,又λ(ab)=λ(mqnp)=λmqλnp,故③正確;對(duì)于④,(ab)2+(a·b)2m2q2-2mnpqn2p2+(mpnq)2m2(p2q2)+n2(p2q2)=(m2n2)(p2q2)=|a|2|b|2. 故④正確.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

定義平面向量之間的一種運(yùn)算“⊙”如下:對(duì)任意的
a
=(m,n),
b
=(p,q)
,令
a
b
=mq-np
,下面說法錯(cuò)誤的是( 。
A、若
a
b
共線,則
a
b
=0
B、
a
b
=
b
a
C、對(duì)任意的λ∈R,有
a
)
b
=λ(
a
b
D、(
a
b
2+(
a
b
2=|
a
|2|
b
|2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義平面向量之間的一種運(yùn)算“*”如下:對(duì)任意的
a
=(m,n),
b
=(p,q)
,令
a
*
b
=mq-np
.給出以下四個(gè)命題:(1)若
a
b
共線,則
a
*
b
=0
;(2)
a
*
b
=
b
*
a
;(3)對(duì)任意的λ∈R,有
a
)*
b
=λ(
a
*
b
)
(4)(
a
*
b
)2+(
a
b
)2=|
a
|2•|
b
|2
.(注:這里
a
b
a
b
的數(shù)量積)則其中所有真命題的序號(hào)是( 。
A、(1)(2)(3)
B、(2)(3)(4)
C、(1)(3)(4)
D、(1)(2)(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義平面向量之間的一種運(yùn)算“*”如下:對(duì)任意的
a
=(m,n),
b
=(p,q)
,令
a
?
b
=mq-np
.給出以下四個(gè)命題:(1)若
a
b
共線,則
a
?
b
=0
;(2)
a
?
b
=
b
?
a
;(3)對(duì)任意的λ∈R,有
a
)?
b
=λ(
a
?
b
)
;(4)(
a
*
b
2
+(
a
b
2
=|
a
|2?|
b
|2
.(注:這里
a
?
b
a
b
的數(shù)量積)其中所有真命題的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義平面向量之間的一種運(yùn)算“⊙”如下:對(duì)任意的向量a=(m,n),b=(p,q),令a⊙b=(m+p,n-q),已知a=(cosθ,3),b=(sinθ,3+
2
sinθ)
(θ∈R),點(diǎn)N(x,y)滿足
ON
=a⊙b(其中O為坐標(biāo)原點(diǎn)),則|
ON
|2
的最大值為( 。
A、
2
B、2+
2
C、2-
2
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義平面向量之間的一種運(yùn)算“⊙”如下:對(duì)任意的
a
=(m,n),
b
=(p,q)
,令
a
b
=mq-np
,則下列說法錯(cuò)誤的是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案