【題目】已知定義域?yàn)镽的函數(shù)f(x)= 是奇函數(shù).
(1)求a,b的值;
(2)判斷函數(shù)f(x)的單調(diào)性,并用定義證明;
(3)若對(duì)于任意 都有f(kx2)+f(2x﹣1)>0成立,求實(shí)數(shù)k的取值范圍.
【答案】
(1)解:因?yàn)閒(x)是奇函數(shù),所以f(0)=0 =0,解得b=1,
f(x)= ,又由f(1)=﹣f(﹣1) ,解得a=2
(2)證明:由(1)可得:f(x)= = .
x1<x2,∴ >0,
則f(x1)﹣f(x2)= = >0,
∴f(x1)>f(x2).
∴f(x)在R上是減函數(shù)
(3)解:∵函數(shù)f(x)是奇函數(shù).
∴f(kx2)+f(2x﹣1)>0成立,等價(jià)于f(kx2)>﹣f(2x﹣1)=f(1﹣2x)成立,
∵f(x)在R上是減函數(shù),∴kx2<1﹣2x,
∴對(duì)于任意 都有kx2<1﹣2x成立,
∴對(duì)于任意 都有k< ,
設(shè)g(x)= ,
∴g(x)= = ,
令t= ,t∈[ ,2],
則有 ,∴g(x)min=g(t)min=g(1)=﹣1
∴k<﹣1,即k的取值范圍為(﹣∞,﹣1)
【解析】(1)直接根據(jù)函數(shù)是奇函數(shù),滿足f(﹣x)=﹣f(x),把x=0,和x=1代入,即可得到關(guān)于a,b的兩個(gè)等式,解方程組求出a,b的值(2)利用減函數(shù)的定義即可證明.(3)f(kx2)+f(2x﹣1)>0成立,等價(jià)于f(kx2)>﹣f(2x﹣1)=f(1﹣2x),即k< 成立,設(shè)g(x)= ,
換元使之成為二次函數(shù),再求最小值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本題滿分12分)已知橢圓C: 的離心率為, 是橢圓的兩個(gè)焦點(diǎn), 是橢圓上任意一點(diǎn),且的周長(zhǎng)是.
(1)求橢圓C的方程;
(2)設(shè)圓T: ,過(guò)橢圓的上頂點(diǎn)作圓T的兩條切線交橢圓于E、F兩點(diǎn),當(dāng)圓心在軸上移動(dòng)且時(shí),求EF的斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某研究所設(shè)計(jì)了一款智能機(jī)器人,為了檢驗(yàn)設(shè)計(jì)方案中機(jī)器人動(dòng)作完成情況,現(xiàn)委托某工廠生產(chǎn)個(gè)機(jī)器人模型,并對(duì)生產(chǎn)的機(jī)器人進(jìn)行編號(hào): ,采用系統(tǒng)抽樣的方法抽取一個(gè)容量為的機(jī)器人樣本,試驗(yàn)小組對(duì)個(gè)機(jī)器人樣本的動(dòng)作個(gè)數(shù)進(jìn)行分組,頻率分布直方圖及頻率分布表中的部分?jǐn)?shù)據(jù)如圖所示,請(qǐng)據(jù)此回答如下問(wèn)題:
分組 | 機(jī)器人數(shù) | 頻率 |
0.08 | ||
10 | ||
10 | ||
6 |
(1)補(bǔ)全頻率分布表,畫出頻率分布直方圖;
(2)若隨機(jī)抽的第一個(gè)號(hào)碼為,這個(gè)機(jī)器人分別放在三個(gè)房間,從到在房間,從到在房間,從到在房間,求房間被抽中的人數(shù)是多少?
(3)從動(dòng)作個(gè)數(shù)不低于的機(jī)器人中隨機(jī)選取個(gè)機(jī)器人,該個(gè)機(jī)器人中動(dòng)作個(gè)數(shù)不低于的機(jī)器人記為,求的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓中, 是橢圓的左、右焦點(diǎn),過(guò)作直線交橢圓于兩點(diǎn),若的周長(zhǎng)為8,離心率為.
(1)求橢圓方程;
(2)若弦的斜率不為0,且它的中垂線與軸交于,求的縱坐標(biāo)的范圍;
(3)是否在軸上存在點(diǎn),使得軸平分?若存在,求出的值,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)= ,且f(﹣2)=3,f(﹣1)=f(1).
( I)求f(x)的解析式;
( II)畫出f(x)的圖象(不寫過(guò)程)并求其值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,曲線的極坐標(biāo)方程是,以極點(diǎn)為原點(diǎn),極軸為軸正半軸(兩坐標(biāo)系取相同的單位長(zhǎng)度)的直角坐標(biāo)系中,曲線的參數(shù)方程為: (為參數(shù)).
(1)求曲線的直角坐標(biāo)方程與曲線的普通方程;
(2)若用代換曲線的普通方程中的得到曲線的方程,若分別是曲線和曲線上的動(dòng)點(diǎn),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè), 滿足約束條件若目標(biāo)函數(shù)的最小值為,則實(shí)數(shù)的值為
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=lnx﹣a(1﹣ ).
(1)若a=1,求f(x)的單調(diào)區(qū)間;
(2)若f(x)≥0,對(duì)任意的x≥1均成立,求實(shí)數(shù)a的取值范圍;
(3)求證:( )1008> .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知映射f:A→B,其中A=B=R,對(duì)應(yīng)法則f:x→y=( ) ,若對(duì)實(shí)數(shù)m∈B,在集合A中存在元素與之對(duì)應(yīng),則m的取值范圍是( )
A.(﹣∞,2]
B.[2,+∞)
C.(2,+∞)
D.(0,2]
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com