【題目】設命題p:函數(shù) 的值域為R;命題q:3x﹣9x<a對一切實數(shù)x恒成立,如果命題“p且q”為假命題,求實數(shù)a的取值范圍.

【答案】解:若函數(shù)f(x)=lg(ax2﹣x+ )的值域為R,
則當a=0時,f(x)=lg(﹣x)的值域為R滿足條件,
若a≠0,要使函數(shù)f(x)的值域為R,
,即 ,即0<a≤2,綜上0≤a≤2;
若3x﹣9x<a對一切實數(shù)x恒成立,
則設g(x)=3x﹣9x , 則g(x)=3x﹣(3x2 , =
設t=3x , 則t>0,則函數(shù)等價為y=t﹣t2=﹣(t 2+ ,
即a>
若“p且q”為真命題,則 ,即 <a≤2
則若“p且q”為假命題,則a>2或a≤
【解析】分別求出兩個命題的為真命題的等價條件,利用復合命題真假之間的關系進行判斷求解.
【考點精析】掌握復合命題的真假是解答本題的根本,需要知道“或”、 “且”、 “非”的真值判斷:“非p”形式復合命題的真假與F的真假相反;“p且q”形式復合命題當P與q同為真時為真,其他情況時為假;“p或q”形式復合命題當p與q同為假時為假,其他情況時為真.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD為矩形,四邊形ADEF為梯形,AD∥FE,∠AFE=60°,∠AED=90°,且平面ABCD⊥平面ADEF,AF=FE=AB= AD=2,點G為AC的中點.
(Ⅰ)求證:平面BAE⊥平面DCE;
(Ⅱ)求三棱錐B﹣AEG的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知四棱錐P﹣ABCD,底面ABCD為正方形,側面PAD為直角三角形,且PA=PD,面PAD⊥面ABCD,E、F分別為AB、PD的中點.
(Ⅰ)求證:EF∥面PBC;
(Ⅱ)求證:AP⊥面PCD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知全集為全體實數(shù)R,集合A={x|3≤x≤7},B={x|2<x<10},C={x|x<a}.
(1)求(RA)∩B;
(2)若A∩C≠,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】空間四點A、B、C、D滿足| |=3,| |=7,| |=11,| |=9,則 的取值為(
A.只有一個
B.有二個
C.有四個
D.有無窮多個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將函數(shù)y=3sin(2x﹣ )的圖象向左平移 個單位后,所在圖象對應的函數(shù)解析式為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一半徑為4米的水輪如圖所示,水輪圓心O距離水面2米,已知水輪每60秒逆時針轉動5圈,如果當水輪上點P從水中浮現(xiàn)時(圖象P0點)開始計算時間,且點P距離水面的高度f(t)(米)與時間t(秒)滿足函數(shù):f(t)=Asin(ω+φ)+B(A>0,ω>0,|φ|< ).
(1)求函數(shù)f(t)的解析式;
(2)點P第二次到達最高點要多長時間?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,側面PAD⊥底面ABCD,側棱PA=PD= ,底面ABCD為直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O為AD中點.
(1)求證:PO⊥平面ABCD;
(2)求異面直線PB與CD所成角的余弦值;
(3)線段AD上是否存在點Q,使得它到平面PCD的距離為 ?若存在,求出 的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知命題p:存在x∈(﹣∞,1)使得x2﹣4x+m=0成立,命題q:方程 表示焦點在x軸上的橢圓.
(1)若p是真命題,求實數(shù)m的取值范圍;
(2)若p或q是假命題,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案