【題目】已知橢圓: ()過(guò)點(diǎn), 、分別為其左、右焦點(diǎn), 為坐標(biāo)原點(diǎn),點(diǎn)為橢圓上一點(diǎn), 軸,且的面積為.
(Ⅰ)求橢圓的離心率和方程;
(Ⅱ)設(shè)、是橢圓上兩動(dòng)點(diǎn),若直線的斜率為,求面積的最大值.
【答案】(Ⅰ);(Ⅱ) .
【解析】試題分析:(Ⅰ)由的面積為,得,結(jié)合求即可;
(Ⅱ)設(shè)直線的方程為,與聯(lián)立, , 到直線的距離為,結(jié)合韋達(dá)定理得,用均值不等式求最值即可.
試題解析:
(Ⅰ)因?yàn)闄E圓: ()過(guò)點(diǎn),所以,由軸,且的面積為,得,所以,即離心率.
因?yàn)?/span>,所以,
由解得(舍負(fù)),故橢圓的方程為.
(Ⅱ)設(shè)直線的方程為,與聯(lián)立,
消去,整理得,
由 ,得,
, ,
故
,
易知點(diǎn)到直線的距離為,
則的面積
,
當(dāng)且僅當(dāng),即時(shí)取“”,經(jīng)檢驗(yàn),滿足要求,
故面積的最大值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若把函數(shù)y=sin(ωx﹣ )的圖象向左平移 個(gè)單位,所得到的圖象與函數(shù)y=cosωx的圖象重合,則ω的一個(gè)可能取值是( )
A.2
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義域?yàn)镽的函數(shù)f(x)= 是奇函數(shù).
(1)求b的值;
(2)用定義法證明函數(shù)f(x)在R上是減函數(shù);
(3)若對(duì)任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校設(shè)有甲、乙兩個(gè)實(shí)驗(yàn)班,為了了解班級(jí)成績(jī),采用分層抽樣的方法從甲、乙兩班學(xué)生中分別抽取8名和6名測(cè)試他們的數(shù)學(xué)與英語(yǔ)成績(jī)(單位:分),用表示,下面是乙班6名學(xué)生的測(cè)試分?jǐn)?shù): , , , , , ,當(dāng)學(xué)生的數(shù)學(xué)、英語(yǔ)成績(jī)滿足,且時(shí),該學(xué)生定為優(yōu)秀生.
(Ⅰ)已知甲班共有80名學(xué)生,用上述樣本數(shù)估計(jì)乙班優(yōu)秀生的數(shù)量;
(Ⅱ)從乙班抽出的上述6名學(xué)生中隨機(jī)抽取3名,求至少有兩名為優(yōu)秀生的概率;
(Ⅲ)從乙班抽出的上述6名學(xué)生中隨機(jī)抽取2名,其中優(yōu)秀生數(shù)記為,求的分布列及其數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠利用輻射對(duì)食品進(jìn)行滅菌消毒,現(xiàn)準(zhǔn)備在該廠附近建一職工宿舍,并對(duì)宿舍進(jìn)行防輻射處理,建房防輻射材料的選用與宿舍到工廠距離有關(guān).若建造宿舍的所有費(fèi)用p(萬(wàn)元)和宿舍與工廠的距離x(km)的關(guān)系為:p= (0≤x≤8),若距離為1km時(shí),宿舍建造費(fèi)用為100萬(wàn)元.為了交通方便,工廠與宿舍之間還要修一條道路,已知購(gòu)置修路設(shè)備需5萬(wàn)元,鋪設(shè)路面每公里成本為6萬(wàn)元,設(shè)f(x)為建造宿舍與修路費(fèi)用之和.
(1)求f(x)的表達(dá)式,并寫出其定義域;
(2)宿舍應(yīng)建在離工廠多遠(yuǎn)處,可使總費(fèi)用f(x)最小,并求最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,已知角A,B,C所對(duì)的三條邊分別是a,b,c,且 .
(1)求角B的大。
(2)若 ,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線,拋物線, 與有公共的焦點(diǎn), 與在第一象限的公共點(diǎn)為,直線的傾斜角為,且,則關(guān)于雙曲線的離心率的說(shuō)法正確的是()
A. 僅有兩個(gè)不同的離心率且 B. 僅有兩個(gè)不同的離心率且 C. 僅有一個(gè)離心率且 D. 僅有一個(gè)離心率且
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線l1:(1+4k)x﹣(2﹣3k)y+(2﹣14k)=0,圓C:x2+y2﹣6x﹣8y+9=0.
(1)判斷直線l1與圓的位置關(guān)系,并證明你的結(jié)論;
(2)直線l2過(guò)直線l1的定點(diǎn)且l1⊥l2 , 若l1與圓C交與A,B兩點(diǎn),l2與圓C交與E,F(xiàn)兩點(diǎn),求AB+EF的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知Sn為數(shù)列{an}的前n項(xiàng)和,an>0,an2+2an=4Sn﹣1.
(1)求{an}的通項(xiàng)公式;
(2)設(shè)bn= ,求{bn}的前n項(xiàng)和Tn .
(3)cn= ,{cn}的前n項(xiàng)和為Dn , 求證:Dn< .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com