【題目】已知直線l1過(guò)點(diǎn)A(0,1),l2過(guò)點(diǎn)B(5,0),如果l1∥l2,且l1與l2間的距離為5,求l1、l2的方程.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐S﹣ABC中,SB⊥底面ABC,且SB=AB=2,BC= ,D、E分別是SA、SC的中點(diǎn).
(Ⅰ)求證:平面ACD⊥平面BCD;
(Ⅱ)求二面角S﹣BD﹣E的平面角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=lnx+x2 .
(Ⅰ)求函數(shù)h(x)=f(x)﹣3x的極值;
(Ⅱ)若函數(shù)g(x)=f(x)﹣ax在定義域內(nèi)為增函數(shù),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)是定義域在R上的偶函數(shù),且在區(qū)間(﹣∞,0)上單調(diào)遞減,求滿足的x的集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),函數(shù).
⑴若的定義域?yàn)?/span>,求實(shí)數(shù)的取值范圍;
⑵當(dāng)時(shí),求函數(shù)的最小值;
⑶是否存在非負(fù)實(shí)數(shù)、,使得函數(shù)的定義域?yàn)?/span>,值域?yàn)?/span>,若存在,求出、的值;若不存在,則說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)z1 , z2是復(fù)數(shù),給出下列四個(gè)命題: ①若|z1﹣z2|=0,則 = ②若z1= ,則 =z2
③若|z1|=|z2|,則z1 =z2 ④若|z1|=|z2|,則z12=z22
其中真命題的序號(hào)是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)= .
(1)是否存在實(shí)數(shù)使函數(shù)是奇函數(shù)?并說(shuō)明理由;
(2)在(1)的條件下,當(dāng)時(shí), 恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ax﹣(a+1)ln(x+1),其中a>0.
(1)求f(x)的單調(diào)區(qū)間;
(2)設(shè)f(x)的最小值為g(a),求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C的方程為 + =1(a>b>0),雙曲線 ﹣ =1的一條漸近線與x軸所成的夾角為30°,且雙曲線的焦距為4 .
(1)求橢圓C的方程;
(2)設(shè)F1 , F2分別為橢圓C的左,右焦點(diǎn),過(guò)F2作直線l(與x軸不重合)交于橢圓于A,B兩點(diǎn),線段AB的中點(diǎn)為E,記直線F1E的斜率為k,求k的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com