現有10道題,其中6道甲類題,4道乙類題,張同學從中任取3道題解答.
(I)求張同學至少取到1道乙類題的概率;
(II)已知所取的3道題中有2道甲類題,1道乙類題.設張同學答對甲類題的概率都是,答對每道乙類題的概率都是,且各題答對與否相互獨立.用表示張同學答對題的個數,求的分布列和數學期望.
科目:高中數學 來源: 題型:解答題
為了解某班學生喜愛打籃球是否與性別有關,對本班48人進行了問卷調查得到了如下的2×2列聯表:
| 喜愛打籃球 | 不喜愛打籃球 | 合計 |
男生 | | 6 | |
女生 | 10 | | |
合計 | | | 48 |
P(χ2≥x0)或 P(K2≥k0) | 0.10 | 0.05 | 0.010 | 0.005 |
x0(或k0) | 2.706 | 3.841 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
根據以往的成績記錄,甲、乙兩名隊員射擊擊中目標靶的環(huán)數的頻率分布情況如圖所示.
假設每名隊員每次射擊相互獨立.
(Ⅰ)求上圖中的值;
(Ⅱ)隊員甲進行三次射擊,求擊中目標靶的環(huán)數不低于8環(huán)的次數的分布列及數學期望(頻率當作概率使用);
(Ⅲ)由上圖判斷,在甲、乙兩名隊員中,哪一名隊員的射擊成績更穩(wěn)定?(結論不需證明)
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
某公司計劃在迎春節(jié)聯歡會中設一項抽獎活動:在一個不透明的口袋中裝入外形一樣號碼分別為1,2,3,…,10的十個小球;顒诱咭淮螐闹忻鋈齻小球,三球號碼有且僅有兩個連號的為三等獎,獎金30元;三球號碼都連號為二等獎,獎金60元;三球號碼分別為1,5,10為一等獎,獎金240元;其余情況無獎金。
(1)求員工甲抽獎一次所得獎金ξ的分布列與期望;
(2)員工乙幸運地先后獲得四次抽獎機會,他得獎次數的方差是多少?
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
為了參加2013年東亞運動會,從四支較強的排球隊中選出18人組成女子排球國家隊,隊員來源如下表:
對別 | 北京 | 上海 | 天津 | 廣州 |
人數 | 4 | 6 | 3 | 5 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
小波以游戲方式決定:是去打球、唱歌還是去下棋.游戲規(guī)則為:以O為起點,再從A1,A2,A3,A4,A5,A6(如圖)這6個點中任取兩點分別為終點得到兩個向量,記這兩個向量的數量積為X,若就去打球;若就去唱歌;若就去下棋.
(Ⅰ)寫出數量積X的所有可能取值;
(Ⅱ)分別求小波去下棋的概率和不去唱歌的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
某公司欲招聘員工,從1000名報名者中篩選200名參加筆試,按筆試成績擇優(yōu)取50名面試,再從面試對象中聘用20名員工.
(Ⅰ)求每個報名者能被聘用的概率;
(Ⅱ)隨機調查了24名筆試者的成績如下表所示:
分數段 | [60,65) | [65,70) | [70,75) | [75,80) | [80,85) | [85,90) |
人數 | 1 | 2 | 6 | 9 | 5 | 1 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
甲、乙兩人參加某種選拔測試.在備選的10道題中,甲答對其中每道題的概率都是,乙能答對其中的5道題.規(guī)定每次考試都從備選的10道題中隨機抽出3道題進行測試,答對一題加10分,答錯一題(不答視為答錯)減5分,得分最低為0分,至少得15分才能入選.
(Ⅰ)求乙得分的分布列和數學期望;
(Ⅱ)求甲、乙兩人中至少有一人入選的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com