【題目】已知函數(shù).
(1)若恒成立,求實數(shù)的最大值;
(2)在(1)成立的條件下,正實數(shù),滿足,證明:.
【答案】(1)2;(2)證明見解析.
【解析】
(1)由題意可得,則原問題等價于,據(jù)此可得實數(shù)的最大值.
(2)證明:法一:由題意結(jié)合(1)的結(jié)論可知,結(jié)合均值不等式的結(jié)論有,據(jù)此由綜合法即可證得.
法二:利用分析法,原問題等價于,進一步,只需證明,分解因式后只需證,據(jù)此即可證得題中的結(jié)論.
(1)由已知可得,
所以,
所以只需,解得,
∴,所以實數(shù)的最大值.
(2)證明:法一:綜合法
∵,
∴,
∴,當(dāng)且僅當(dāng)時取等號,①
又∵,∴,
∴,當(dāng)且僅當(dāng)時取等號,②
由①②得,∴,所以.
法二:分析法
因為,,
所以要證,只需證,
即證,
∵,所以只要證,
即證,
即證,因為,所以只需證,
因為,所以成立,
所以.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(I)若函數(shù)在區(qū)間上均單調(diào)且單調(diào)性相反,求的取值范圍;
(Ⅱ)若,證明:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在棱長為1的正方體中,點在上移動,點在上移動,,連接.
(1)證明:對任意,總有∥平面;
(2)當(dāng)的長度最小時,求二面角的平面角的余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中為實常數(shù).
(1)若當(dāng)時,在區(qū)間上的最大值為,求的值;
(2)對任意不同兩點,,設(shè)直線的斜率為,若恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓()的離心率是,點在短軸上,且。
(1)球橢圓的方程;
(2)設(shè)為坐標原點,過點的動直線與橢圓交于兩點。是否存在常數(shù),使得為定值?若存在,求的值;若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】假設(shè)關(guān)于某設(shè)備的使用年限(年)和所支出的年平均維修費用(萬元)(即維修費用之和除以使用年限),有如下的統(tǒng)計資料:
使用年限 | 2 | 3 | 4 | 5 | 6 |
維修費用 | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
(1)畫出散點圖;
(2)求關(guān)于的線性回歸方程;
(3)估計使用年限為10年時所支出的年平均維修費用是多少?
參考公式:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某體育公司對最近6個月內(nèi)的市場占有率進行了統(tǒng)計,結(jié)果如表:
(1)可用線性回歸模型擬合與之間的關(guān)系嗎?如果能,請求出關(guān)于的線性回歸方程,如果不能,請說明理由;
(2)公司決定再采購,兩款車擴大市場,,兩款車各100輛的資料如表:
平均每輛車每年可為公司帶來收入500元,不考慮采購成本之外的其他成本,假設(shè)每輛車的使用壽命都是整數(shù)年,用每輛車使用壽命的頻率作為概率,以每輛車產(chǎn)生利潤的期望值作為決策依據(jù),應(yīng)選擇采購哪款車型?
參考數(shù)據(jù):,,,.
參考公式:相關(guān)系數(shù);
回歸直線方程,其中,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】假設(shè)關(guān)于某設(shè)備的使用年限(年)和所支出的年平均維修費用(萬元)(即維修費用之和除以使用年限),有如下的統(tǒng)計資料:
使用年限 | 2 | 3 | 4 | 5 | 6 |
維修費用 | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
(1)畫出散點圖;
(2)求關(guān)于的線性回歸方程;
(3)估計使用年限為10年時所支出的年平均維修費用是多少?
參考公式:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com