【題目】如圖所示的三棱柱中,平面的中點(diǎn)為,若線段上存在點(diǎn)使得平面.

(Ⅰ)求;

(Ⅱ)求二面角的余弦值.

【答案】(Ⅰ);(Ⅱ).

【解析】

(Ⅰ)設(shè)的長為,分別以,,的方向?yàn)?/span>,,軸正方向建立空間直角坐標(biāo)系,求出各點(diǎn)的坐標(biāo),,從而求得點(diǎn)的坐標(biāo)為,求得,利用平面列方程即可求得,問題得解。

(Ⅱ)求出平面的法向量為,結(jié)合(Ⅰ)中是平面的一個(gè)法向量,利用法向量的夾角坐標(biāo)表示即可求解。

解:(Ⅰ)方法一:設(shè)的長為,依題意可知,,兩兩垂直,分別以,,的方向?yàn)?/span>,軸正方向建立空間直角坐標(biāo)系,如圖所示.

,,,,

因此,.設(shè),易求得點(diǎn)的坐標(biāo)為,所以.

因?yàn)?/span>平面,所以.

解之得,所以的長為.

方法二:如圖,在平面內(nèi)過點(diǎn)的垂線分別交,,連接,在平面內(nèi)過點(diǎn)的垂線交,連接.

依題意易得,五點(diǎn)共面.

因?yàn)?/span>平面,所以.①

中,,,因此為線段靠近的三等分點(diǎn).

由對稱性知,為線段靠近的三等分點(diǎn),因此.

代入①,得.

(Ⅱ)由(Ⅰ)方法一可知,是平面的一個(gè)法向量且,.

設(shè)平面的法向量為,則可以為.

.

因?yàn)槎娼?/span>為銳角,故所求二面角的余弦值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為預(yù)防病毒爆發(fā),某生物技術(shù)公司研制出一種新流感疫苗,為測試該疫苗的有效性(若疫苗有效的概率小于%,則認(rèn)為測試沒有通過),公司選定個(gè)流感樣本分成三組,測試結(jié)果如下表:

疫苗有效

疫苗無效

已知在全體樣本中隨機(jī)抽取個(gè),抽到組疫苗有效的概率是

(Ⅰ)求的值;

(Ⅱ)現(xiàn)用分層抽樣的方法在全體樣本中抽取個(gè)測試結(jié)果,問應(yīng)在組抽取多少個(gè)?

(Ⅲ)已知,求不能通過測試的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)點(diǎn)是拋物線上異于原點(diǎn)的一點(diǎn),過點(diǎn)作斜率為、的兩條直線分別交、兩點(diǎn)(、三點(diǎn)互不相同).

1)已知點(diǎn),求的最小值;

2)若,直線的斜率是,求的值;

3)若,當(dāng)時(shí),點(diǎn)的縱坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知三棱錐O﹣ABC的側(cè)棱OAOB,OC兩兩垂直,且OA=1,OB=OC=2EOC的中點(diǎn).

1)求異面直線BEAC所成角的余弦值;

2)求直線BE和平面ABC的所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】哥德巴赫猜想是每個(gè)大于2的偶數(shù)可以表示為兩個(gè)素?cái)?shù)的和,如,在不超過13的素?cái)?shù)中,隨機(jī)選取兩個(gè)不同的數(shù),其和為偶數(shù)的概率是________(用分?jǐn)?shù)表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l和平面,若直線l在空間中任意放置,則在平面內(nèi)總有直線

A.垂直B.平行C.異面D.相交

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】199個(gè)自然數(shù)中任取兩個(gè):

恰有一個(gè)偶數(shù)和恰有一個(gè)奇數(shù);至少有一個(gè)是奇數(shù)和兩個(gè)數(shù)都是奇數(shù);

至多有一個(gè)奇數(shù)和兩個(gè)數(shù)都是奇數(shù);至少有一個(gè)奇數(shù)和至少有一個(gè)偶數(shù).

在上述事件中,是對立事件的是  

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如下圖所示,ABCD是邊長為3的正方形,DE平面ABCD,AFDE,DE=3AF,BE與平面ABCD所成的角為60°.

(1)求證:AC平面BDE;

(2)求二面角F-BE-D的余弦值

(3)設(shè)點(diǎn)M是線段BD上一個(gè)動(dòng)點(diǎn),試確定點(diǎn)M的位置,使得AM平面BEF,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在極坐標(biāo)系中,圓C的方程為ρ=4cosθ,以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸的非負(fù)半軸建立平面直角坐標(biāo)系,直線l經(jīng)過點(diǎn)M(5,6),且斜率為

(1)求圓 C的平面直角坐標(biāo)方程和直線l的參數(shù)方程;

(2)若直線l與圓C交于A,B兩點(diǎn),求|MA|+|MB|的值.

查看答案和解析>>

同步練習(xí)冊答案