已知數(shù)列的前項和為,,是與的等差中項().
(1)求數(shù)列的通項公式;
(2)是否存在正整數(shù),使不等式恒成立,若存在,求出
的最大值;若不存在,請說明理由.
(1) (2)存在,11
解析試題分析:
(1)解法一:根據(jù)是與的等差中項,利用等差中項得到,()①,
當時有 ②,則①-②可得,從而可得數(shù)列通項.
解法二:根據(jù)是與的等差中項,利用等差中項得到,()①,根據(jù)該式的結(jié)構(gòu)特征,利用構(gòu)造法,可構(gòu)造出等比數(shù)列,從而求得,進而利用得到數(shù)列的通項.
(2)根據(jù)(1)的結(jié)論可知,數(shù)列是等比數(shù)列,所以可以得到其前項和;代入化簡,討論的奇偶發(fā)現(xiàn), 為奇數(shù)時,恒成立; 為偶數(shù)時,可將其轉(zhuǎn)化為二次函數(shù)在固定區(qū)間恒成立問題,利用單調(diào)性可判斷是否存在這樣的正整數(shù).
試題解析:(1)解法一:因為是與的等差中項,
所以(),即,()①
當時有 ②
①-②得,即對都成立
又根據(jù)①有即,所以
所以. 所以數(shù)列是首項為1,公比為的等比數(shù)列.
解法二: 因為是與的等差中項,
所以(),即,()
由此得(),
又,所以(),
所以數(shù)列是以為首項,為公比的等比數(shù)列.
得,即(),
所以,當時,,
又時,也適合上式,所以.
(2)根據(jù)(1)的結(jié)論可知,
數(shù)列是首項為1,公比為的等比數(shù)列,
所以
科目:高中數(shù)學 來源: 題型:解答題
已知數(shù)列{ }、{ }滿足:.
(1)求
(2)證明:數(shù)列{}為等差數(shù)列,并求數(shù)列和{ }的通項公式;
(3)設,求實數(shù)為何值時 恒成立.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設是數(shù)列的前項和,且.
(1)當,時,求;
(2)若數(shù)列為等差數(shù)列,且,.
①求;
②設,且數(shù)列的前項和為,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知數(shù)列的前項和,數(shù)列滿足.
(1)求
(2)求證數(shù)列是等差數(shù)列,并求數(shù)列的通項公式;
(3)設,數(shù)列的前項和為,求滿足的的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設數(shù)列的前項和為,數(shù)列滿足:,已知對任意都成立
(1)求的值
(2)設數(shù)列的前項的和為,問是否存在互不相等的正整數(shù),使得成等差數(shù)列,且成等比數(shù)列?若存在,求出;若不存在,說明理由
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
在等差數(shù)列中,,其前項和為,等比數(shù)列 的各項均為正數(shù),,公比為,且,.
(1)求與; (2)設數(shù)列滿足,求的前項和.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知是一個公差大于0的等差數(shù)列,且滿足.
(1)求數(shù)列的通項公式;
(2)若數(shù)列和數(shù)列滿足等式:(n為正整數(shù))求數(shù)列的前n項和.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知是等差數(shù)列,滿足,,數(shù)列滿足,,且是等比數(shù)列.
(1)求數(shù)列和的通項公式;
(2)求數(shù)列的前項和.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com