【題目】在①的等差中項(xiàng);②的等比中項(xiàng);③數(shù)列的前5項(xiàng)和為65這三個條件中任選一個,補(bǔ)充在橫線中,并解答下面的問題.

已知是公差為2的等差數(shù)列,其前項(xiàng)和為,________________________

1)求

2)設(shè),是否存在,使得?若存在,求出的值;若不存在,說明理由.

【答案】1)不論選哪個條件,2)不存在,見解析

【解析】

1)如果是①或者②,用表示出已知數(shù)列的項(xiàng)和前項(xiàng)和,求出,可得通項(xiàng)公式,如果是③,先說明數(shù)列是公差為4的等差數(shù)列,首期為,由等差數(shù)列前項(xiàng)和公式可求得,同樣得通項(xiàng)公式;

2)用作差法求出中的最大項(xiàng),而,得結(jié)論不存在項(xiàng)

1)解:若選①的等差中項(xiàng),則,

解得.所以

若選②的等比中項(xiàng),則,

解得.所以

若選③數(shù)列的前5項(xiàng)和為65,

,所以是首項(xiàng)為,公差為4的等差數(shù)列.

的前5項(xiàng)和為65,得

解得.所以

2

所以;

所以

所以中的最大項(xiàng)為

顯然.所以

所以不存在,使得

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司準(zhǔn)備上市一款新型轎車零配件,上市之前擬在其一個下屬4S店進(jìn)行連續(xù)30天的試銷.定價為1000/.試銷結(jié)束后統(tǒng)計(jì)得到該4S店這30天內(nèi)的日銷售量(單位:件)的數(shù)據(jù)如下表:

日銷售量

40

60

80

100

頻數(shù)

9

12

6

3

1)若該4S店試銷期間每個零件的進(jìn)價為650/件,求試銷連續(xù)30天中該零件日銷售總利潤不低于24500元的頻率;

2)試銷結(jié)束后,這款零件正式上市,每個定價仍為1000元,但生產(chǎn)公司對該款零件不零售,只提供零件的整箱批發(fā),大箱每箱有60件,批發(fā)價為550/件;小箱每箱有45件,批發(fā)價為600/.4S店決定每天批發(fā)兩箱,根據(jù)公司規(guī)定,當(dāng)天沒銷售出的零件按批發(fā)價的9折轉(zhuǎn)給該公司的另一下屬4S.假設(shè)該4店試銷后的連續(xù)30天的日銷售量(單位:件)的數(shù)據(jù)如下表:

日銷售量

50

70

90

110

頻數(shù)

5

15

8

2

(。┰O(shè)該4S店試銷結(jié)束后連續(xù)30天每天批發(fā)兩大箱,這30天這款零件的總利潤;

(ⅱ)以總利潤作為決策依據(jù),該4S店試銷結(jié)束后連續(xù)30天每天應(yīng)該批發(fā)兩大箱還是兩小箱?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】拋物線的焦點(diǎn)為F ,已知點(diǎn)A ,B 為拋物線上的兩個動點(diǎn),且滿足.過弦AB 的中點(diǎn)M 作拋物線準(zhǔn)線的垂線MN ,垂足為N,則 的最大值為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的焦距和短軸長度相等,且過點(diǎn)

(Ⅰ)求橢圓C的方程;

(Ⅱ)圓與橢圓C分別交y軸正半軸于點(diǎn)A,B,過點(diǎn),且)且與x軸垂直的直線l分別交圓O與橢圓C于點(diǎn)M,N(均位于x軸上方),問直線AMBN的交點(diǎn)是否在一條定直線上,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)分別為橢圓的左右頂點(diǎn)和右焦點(diǎn),過點(diǎn)的直線交橢圓于點(diǎn).

1)若,點(diǎn)與橢圓左準(zhǔn)線的距離為,求橢圓的方程;

2)已知直線的斜率是直線斜率的倍.

①求橢圓的離心率;

②若橢圓的焦距為,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某溫泉度假村擬以泉眼為圓心建造一個半徑為米的圓形溫泉池,如圖所示,是圓上關(guān)于直徑對稱的兩點(diǎn),以為圓心,為半徑的圓與圓的弦、分別交于點(diǎn)、,其中四邊形為溫泉區(qū),I、II區(qū)域?yàn)槌赝庑菹^(qū),IIIIV區(qū)域?yàn)槌貎?nèi)休息區(qū),設(shè)

1)當(dāng)時,求池內(nèi)休息區(qū)的總面積(IIIIV兩個部分面積的和);

2)當(dāng)池內(nèi)休息區(qū)的總面積最大時,求的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一胸針圖樣由等腰三角形及圓心在中軸線上的圓弧構(gòu)成,已知.為了增加胸針的美觀程度,設(shè)計(jì)師準(zhǔn)備焊接三條金絲線長度不小于長度,設(shè).

1)試求出金絲線的總長度,并求出的取值范圍;

2)當(dāng)為何值時,金絲線的總長度最小,并求出的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,四邊形為平行四邊形,,EPD的中點(diǎn),.

1)求證:平面;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是(

A.命題,則的否命題是,則

B.命題ABC中,若AB,則sinAsinB的逆命題為假命題.

C.的必要不充分條件

D.pq為真命題,則p,q至少有一個為真命題

查看答案和解析>>

同步練習(xí)冊答案