【題目】如圖,過底面是矩形的四棱錐FABCD的頂點(diǎn)F作EF∥AB,使AB=2EF,且平面ABFE⊥平面ABCD,若點(diǎn)G在CD上且滿足DG=G.
求證:(1)FG∥平面AED;
(2)平面DAF⊥平面BAF.
【答案】(1)見解析;(2)見解析.
【解析】試題分析: (1)根據(jù)題意證明四邊形DEFG為平行四邊形,則FG∥ED,由線面平行判定定理,結(jié)論易證得;(2)由面面垂直的性質(zhì)定理證明AD⊥平面BAF,由面面垂直的判定定理易證出結(jié)論.
試題解析:
(1)證明:(1) DG=GC,AB=CD=2EF,AB∥EF∥CD,
EF∥DG,EF=DG.
四邊形DEFG為平行四邊形,
FG∥ED.
又FG∥平面AED,ED平面AED,
FG∥平面AED.
(2) 平面ABFE⊥平面ABCD,平面ABFE∩平面ABCD=AB,
AD⊥AB,AD平面ABCD,
AD⊥平面BAF,
又AD平面DAF,
平面DAF⊥平面BAF.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,橢圓經(jīng)過點(diǎn),離心率,直線的方程為.
求橢圓的方程;
是經(jīng)過右焦點(diǎn)的任一弦(不經(jīng)過點(diǎn)),設(shè)直線與直線相交于點(diǎn),記, , 的斜率為, , .問:是否存在常數(shù),使得?若存在,求的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,上頂點(diǎn)到直線的距離為.
(1)求橢圓的方程;
(2)是否存在過點(diǎn)的直線與橢圓交于不同的兩點(diǎn),線段的中點(diǎn)為,使得?若存在,求直線的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列命題:①若,則;②若,,則;③若,則;④;⑤若,,則,;⑥正數(shù),滿足,則的最小值為.其中正確命題的序號是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國古代的數(shù)學(xué)家們最早發(fā)現(xiàn)并應(yīng)用勾股定理,而最先對勾股定理進(jìn)行證明的是三國時(shí)期的數(shù)學(xué)家趙爽.趙爽創(chuàng)制了一幅“勾股圓方圖”,用數(shù)形結(jié)合的方法,給出了勾股定理的詳細(xì)證明。在這幅“勾股圓方圖”中,個(gè)相等的直角三角形再加上中間的那個(gè)小正方形組成一個(gè)大的正方形。若直角三角形的較小銳角的正切值為,現(xiàn)向該正方形區(qū)域內(nèi)投擲-枚飛鏢,則飛鏢落在小正方形內(nèi)(陰影部分)的概率是( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】共享單車是城市交通的一道亮麗的風(fēng)景,給人們短距離出行帶來了很大的方便.某校”單車社團(tuán)”對市年齡在歲騎過共享單車的人群隨機(jī)抽取人調(diào)查,騎行者的年齡情況如下圖顯示。
(1)已知年齡段的騎行人數(shù)是兩個(gè)年齡段的人數(shù)之和,請估計(jì)騎過共享單車人群的年齡的中位數(shù);
(2)從兩個(gè)年齡段騎過共享單車的人中按的比例用分層抽樣的方法抽取人,從中任選人,求兩人都在)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線,直線與E交于A、B兩點(diǎn),且,其中O為原點(diǎn).
(1)求拋物線E的方程;
(2)點(diǎn)C坐標(biāo)為,記直線CA、CB的斜率分別為,證明: 為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形中,,,,,,分別在,上,,現(xiàn)將四邊形沿折起,使平面平面.
(Ⅰ)若,在折疊后的線段上是否存在一點(diǎn),且,使得平面?若存在,求出的值;若不存在,說明理由;
(Ⅱ)求三棱錐的體積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,以O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為ρ=2cos,直線l的參數(shù)方程為 (t為參數(shù)),直線l與圓C交于A,B兩點(diǎn),P是圓C上不同于A,B的任意一點(diǎn).
(1)求圓心的極坐標(biāo);
(2)求△PAB面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com