【題目】如圖,網(wǎng)格紙上小正方形的邊長為1,粗實線畫出的是某多面體的三視圖,則該多面體外接球的表面積為 .
【答案】41π
【解析】解:由三視圖知該幾何體是如圖所示的三棱錐A﹣BCD,
將該三棱錐是放在棱長為4的正方體中,E是棱的中點,
所以三棱錐A﹣BCD和三棱柱DEF﹣ABC的外接球相同,
設(shè)外接球的球心為O、半徑是R,△ABC外接圓的圓心是M,則OM=2,
在△ABC中,AB=AC=2 ,由余弦定理得,
cos∠CAB= = = ,
所以sin∠CAB= = ,
由正弦定理得,2CM= =5,則CM= ,
所以R=OC= =
則外接球的表面積S=4πR2=41π,
所以答案是:41π.
【考點精析】解答此題的關(guān)鍵在于理解由三視圖求面積、體積的相關(guān)知識,掌握求體積的關(guān)鍵是求出底面積和高;求全面積的關(guān)鍵是求出各個側(cè)面的面積.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C: (a>b>0)的一個頂點為A(2,0),離心率為.直線y=k(x-1)與橢圓C交于不同的兩點M,N.
(1)求橢圓C的方程;
(2)當△AMN的面積為時,求k的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=lnx﹣a(x﹣1),g(x)=ex .
(1)當a=2時,求函數(shù)f(x)的最值;
(2)當a≠0時,過原點分別作曲線y=f(x)與y=g(x)的切線l1 , l2 , 已知兩切線的斜率互為倒數(shù),證明: <a< .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若執(zhí)行如圖所示的程序框圖,輸出S的值為3,則判斷框中應填入的條件是( )
A.k<6?
B.k<7?
C.k<8?
D.k<9?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若執(zhí)行如圖所示的程序框圖,輸出S的值為3,則判斷框中應填入的條件是( )
A.k<6?
B.k<7?
C.k<8?
D.k<9?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,底面ABCD為菱形,∠BAD=60°,Q是AD的中點.
(1)若PA=PD,求證:平面PQB⊥平面PAD;
(2)若平面APD⊥平面ABCD,且PA=PD=AD=2,在線段PC上是否存在點M,使二面角M﹣BQ﹣C的大小為60°.若存在,試確定點M的位置,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在人群流量較大的街道,有一中年人吆喝“送錢”,只見他手拿一黑色小布袋,袋中有3只黃色、3只白色的乒乓球(其體積、質(zhì)地完成相同),旁邊立著一塊小黑板寫道:
摸球方法:從袋中隨機摸出3個球,若摸得同一顏色的3個球,攤主送給摸球者5元錢;若摸得非同一顏色的3個球,摸球者付給攤主1元錢.
(1)摸出的3個球為白球的概率是多少?
(2)摸出的3個球為2個黃球1個白球的概率是多少?
(3)假定一天中有100人次摸獎,試從概率的角度估算一下這個攤主一個月(按30天計)能賺多少錢?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校高二某班的一次數(shù)學測試成績的莖葉圖和頻率分布直方圖都受到不同程度的破壞,其可見部分如圖所示.據(jù)此解答如下問題:
(1)計算頻率分布直方圖中[80,90)間的矩形的高;
(2)根據(jù)莖葉圖和頻率分布直方圖估計這次測試的平均分.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=aln(x+1)+x2-ax+1(a>1).
(1)求函數(shù)y=f(x)在點(0,f(0))處的切線方程;
(2)當a>1時,求函數(shù)y=f(x)的單調(diào)區(qū)間和極值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com