【題目】已知函數(shù)f(x)=lnx﹣a(x﹣1),g(x)=ex
(1)當(dāng)a=2時(shí),求函數(shù)f(x)的最值;
(2)當(dāng)a≠0時(shí),過原點(diǎn)分別作曲線y=f(x)與y=g(x)的切線l1 , l2 , 已知兩切線的斜率互為倒數(shù),證明: <a<

【答案】
(1)解:當(dāng)a=2時(shí),f(x)=lnx﹣2(x﹣1)的定義域?yàn)椋?,+∞),

f′(x)= ﹣2=

當(dāng)x∈(0, )時(shí),f′(x)>0,當(dāng)x∈( ,+∞)時(shí),f′(x)<0,

即函數(shù)f(x)在(0, )上單調(diào)遞增,在( ,+∞)上單調(diào)遞減.

所以f(x)max=f( )=1﹣ln2,沒有最小值


(2)解:證明:設(shè)切線l2的方程為y=k2x,切點(diǎn)為(x2,y2),則y2=

k2=g′(x2)= = ,

所以x2=1,y2=e,則k2=e.

由題意知,切線l1的斜率為k1= = ,l1的方程為y= x;

設(shè)l1與曲線y=f(x)的切點(diǎn)為(x1,y1),則k1=f′(x1)= ﹣a= = ,

所以y1= =1﹣ax1,a=

又因?yàn)閥1=lnx1﹣a(x1﹣1),消去y1和a后,

整理得lnx1﹣1+ =0.

令m(x)=lnx﹣1+ =0,

則m′(x)= = ,m(x)在(0,1)上單調(diào)遞減,在(1,+∞)上單調(diào)遞增.

若x1∈(0,1),因?yàn)閙( )=﹣2+e﹣ >0,m(1)=﹣ <0,所以x1∈( ,1),

而a= 在x1∈( ,1)上單調(diào)遞減,所以 <a<

若x1∈(1,+∞),因?yàn)閙(x)在(1,+∞)上單調(diào)遞增,且m(e)=0,則x1=e,

所以a= =0(舍去).

綜上可知, <a<


【解析】(1)當(dāng)a=2時(shí),f(x)=lnx﹣2(x﹣1)的定義域?yàn)椋?,+∞),再利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間,從而求解函數(shù)的最值;(2)設(shè)切線l2的方程為y=k2x,從而由導(dǎo)數(shù)及斜率公式可求得切點(diǎn)為(1,e),k2=e;再設(shè)l1的方程為y= x;設(shè)l1與曲線y=f(x)的切點(diǎn)為(x1 , y1),從而可得y1= =1﹣ax1 , a= ;結(jié)合y1=lnx1﹣a(x1﹣1)可得lnx1﹣1+ =0,再令m(x)=lnx﹣1+ ,從而求導(dǎo)確定函數(shù)的單調(diào)性,從而確定 <a< ,問題得證.
【考點(diǎn)精析】本題主要考查了函數(shù)的最大(小)值與導(dǎo)數(shù)的相關(guān)知識(shí)點(diǎn),需要掌握求函數(shù)上的最大值與最小值的步驟:(1)求函數(shù)內(nèi)的極值;(2)將函數(shù)的各極值與端點(diǎn)處的函數(shù)值,比較,其中最大的是一個(gè)最大值,最小的是最小值才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某研究機(jī)構(gòu)對某校高二文科學(xué)生的記憶力x和判斷力y進(jìn)行統(tǒng)計(jì)分析,得下表數(shù)據(jù).

x

6

8

10

12

y

2

3

5

6

(1)請畫出上表數(shù)據(jù)的散點(diǎn)圖;

(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程;

(3)試根據(jù)(2)中求出的線性回歸方程,預(yù)測記憶力為14的學(xué)生的判斷力.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)P0,﹣1)是橢圓C1+=1ab0)的一個(gè)頂點(diǎn),C1的長軸是圓C2x2+y2=4的直徑,l1,l2是過點(diǎn)P且互相垂直的兩條直線,其中l1交圓C2A、B兩點(diǎn),l2交橢圓C1于另一點(diǎn)D

1)求橢圓C1的方程;

2)求△ABD面積的最大值時(shí)直線l1的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=|3x﹣1|+ax+3,a∈R.
(1)若a=1,解不等式f(x)≤4;
(2)若函數(shù)f(x)有最小值,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的四棱錐P﹣ABCD中,四邊形ABCD為正方形,PA⊥CD,BC⊥平面PAB,且E,M,N分別為PD,CD,AD的中點(diǎn), =3

(1)證明:PB∥平面FMN;
(2)若PA=AB,求二面角E﹣AC﹣B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某班主任對全班50名學(xué)生的學(xué)習(xí)積極性和對待班級(jí)工作的態(tài)度進(jìn)行了調(diào)查,統(tǒng)計(jì)數(shù)據(jù)如下表所示:

分類

積極參加

班級(jí)工作

不太主動(dòng)參

加班級(jí)工作

總計(jì)

學(xué)習(xí)積極性高

18

7

25

學(xué)習(xí)積極性一般

6

19

25

總計(jì)

24

26

50

(1)如果隨機(jī)抽查這個(gè)班的一名學(xué)生,那么抽到積極參加班級(jí)工作的學(xué)生的概率是多少?抽到不太主動(dòng)參加班級(jí)工作且學(xué)習(xí)積極性一般的學(xué)生的概率是多少?

(2)試運(yùn)用獨(dú)立性檢驗(yàn)的思想方法分析:學(xué)生的學(xué)習(xí)積極性與對待班級(jí)工作的態(tài)度是否有關(guān),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)橢圓C:+=1(a>b>0)與x軸交于A、B兩點(diǎn),點(diǎn)P是橢圓C上異于A、B的任意一點(diǎn),直線PA、PB分別與y軸交于點(diǎn)M、N,求證:為定值b2﹣a2

(2)由(1)類比可得如下真命題:雙曲線C:=1(a>0,b>0)與x軸交于A、B兩點(diǎn),點(diǎn)P是雙曲線C上異于A、B的任意一點(diǎn),直線PA、PB分別與y軸交于點(diǎn)M、N,則為定值.請寫出這個(gè)定值(不要求給出解題過程).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,網(wǎng)格紙上小正方形的邊長為1,粗實(shí)線畫出的是某多面體的三視圖,則該多面體外接球的表面積為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,AD⊥平面PDC,AD∥BC,PD⊥PB,AD=1,BC=3,CD=4,PD=2.(13分)
(I)求異面直線AP與BC所成角的余弦值;
(II)求證:PD⊥平面PBC;
(II)求直線AB與平面PBC所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案