【題目】事件一假設(shè)某地區(qū)有高中生2400初中生10900小學生11000.為了了解該地區(qū)學生的視力健康狀況,從中抽取的學生進行調(diào)查.事件二某校為了了解高一年級學生對教師教學的滿意率打算從高一年級500名學生中抽取50名進行調(diào)查.對于事件一和事件二,恰當?shù)某闃臃椒ǚ謩e是( )

A. 系統(tǒng)抽樣分層抽樣

B. 系統(tǒng)抽樣,簡單隨機抽樣

C. 簡單隨機抽樣,系統(tǒng)抽樣

D. 分層抽樣,系統(tǒng)抽樣

【答案】D

【解析】

根據(jù)分層抽樣與系統(tǒng)抽樣的定義可得結(jié)論.

解:事件一,由于學生的近視情況與學生的年齡有一定的關(guān)系,故此事件應(yīng)選用分層抽樣;事件二,本事件中總體容量較大,樣本容量也較大,可以采取系統(tǒng)抽樣的方法進行抽樣,可保證每個個體有同樣的機會被抽到,

故選D.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中, 平面, 為線段上一點, 的中點.

(1)證明:

(2)求四面體的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知三棱錐,,、、兩兩垂直,是三棱錐外接球面上一動點,則到平面的距離的最大值是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若對任意的正整數(shù),總存在正整數(shù),使得數(shù)列的前項和,則稱回歸數(shù)列

項和為的數(shù)列是否是回歸數(shù)列?并請說明理由.通項公式為的數(shù)列是否是回歸數(shù)列?并請說明理由;

)設(shè)是等差數(shù)列,首項,公差,若回歸數(shù)列,求的值.

)是否對任意的等差數(shù)列,總存在兩個回歸數(shù)列,使得成立,請給出你的結(jié)論,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個盒中裝有編號分別為1,2,3,4的四個形狀大小完全相同的小球.

(1)從盒中任取兩球,求取出的球的編號之和大于5的概率.

(2)從盒中任取一球,記下該球的編號,將球放回,再從盒中任取一球,記下該球的編號,求的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:極坐標與參數(shù)方程

在平面直角坐標系中,曲線的參數(shù)方程為為參數(shù)).

1)求曲線的普通方程;

2)經(jīng)過點(平面直角坐標系中點)作直線交曲線, 兩點,若恰好為線段的三等分點,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知ABC分別為△ABC的三邊a,b,c所對的角,向量(sin A,sin B),(cos Bcos A),且sin 2C.

(1)求角C的大小;

(2)sin A,sin Csin B成等差數(shù)列,且,求邊c的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱柱ABCA1B1C1中,所有棱長均相等,且AA1⊥平面ABC,點D、E、F分別為所在棱的中點.

1)求證:EF∥平面CDB1;

2)求異面直線EFBC所成角的余弦值;

3)求二面角B1CDB的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知在等比數(shù)列中, ,且, , 成等差數(shù)列.

(Ⅰ)求數(shù)列的通項公式;

(Ⅱ)若數(shù)列滿足,數(shù)列的前項和為,試比較的大小.

查看答案和解析>>

同步練習冊答案