【題目】超級(jí)細(xì)菌是一種耐藥性細(xì)菌,產(chǎn)生超級(jí)細(xì)菌的主要原因是用于抵抗細(xì)菌侵蝕的藥物越來越多,但是由于濫用抗生素的現(xiàn)象不斷的發(fā)生,很多致病菌也對(duì)相應(yīng)的抗生素產(chǎn)生了耐藥性,更可怕的是,抗生素藥物對(duì)它起不到什么作用,病人會(huì)因?yàn)楦腥径鹂膳碌难装Y,高燒,痙攣,昏迷,甚至死亡.
某藥物研究所為篩查某種超級(jí)細(xì)菌,需要檢驗(yàn)血液是否為陽性,現(xiàn)有份血液樣本,每個(gè)樣本取到的可能性相等,有以下兩種檢驗(yàn)方式:(1)逐份檢驗(yàn),則需要檢驗(yàn)次;(2)混合檢驗(yàn),將其中(且)份血液樣本分別取樣混合在一起檢驗(yàn),若檢驗(yàn)結(jié)果為陰性,則這份的血液全為陰性,因而這份血液樣本只要檢驗(yàn)一次就夠了;如果檢驗(yàn)結(jié)果為陽性,為了明確這k份血液究竟哪幾份為陽性,就要對(duì)這k份再逐份檢驗(yàn),此時(shí)這k份血液的檢驗(yàn)次數(shù)總共為次.假設(shè)在接受檢驗(yàn)的血液樣本中,每份樣本的檢驗(yàn)結(jié)果是陽性還是陰性都是獨(dú)立的,且每份樣本是陽性結(jié)果的概率為
現(xiàn)取其中(且)份血液樣本,記采用逐份檢驗(yàn)方式,樣本需要檢驗(yàn)的總次數(shù)為,采用混合檢驗(yàn)方式,樣本需要檢驗(yàn)的總次數(shù)為
(1)運(yùn)用概率統(tǒng)計(jì)的知識(shí),若,試求關(guān)于的函數(shù)關(guān)系式;
(2)若與抗生素計(jì)量相關(guān),其中是不同的正實(shí)數(shù),滿足,對(duì)任意的,都有
(i)證明:為等比數(shù)列;
(ii)當(dāng)時(shí),采用混合檢驗(yàn)方式可以使得樣本需要檢驗(yàn)的總次數(shù)的期望值比逐份檢驗(yàn)的總次數(shù)期望值更少,求的最大值.
參考數(shù)據(jù):,,,,,
【答案】(1),(,且);(2)(i)見解析,(ii)4
【解析】
(1)易知若取份血液樣本則;的所有可能取值為1,,根據(jù)概率公式可表示出.結(jié)合,化簡即可關(guān)于的函數(shù)關(guān)系式;
(2)(i)根據(jù)當(dāng)時(shí)成立,則由數(shù)學(xué)歸納法即可證明為等比數(shù)列.(ii)根據(jù)(i)可得,,化簡可得,構(gòu)造函數(shù),求得導(dǎo)函數(shù),可通過的符號(hào)判斷函數(shù)單調(diào)性,結(jié)合參考數(shù)據(jù),即可求得的最大值.
(1)由已知得;的所有可能取值為1,,
,
.
.
若,
則,,
,
.
關(guān)于k的函數(shù)關(guān)系式為,(,且).
(2)(i)證明:當(dāng)時(shí),,
,令,則,
,下面證明對(duì)任意的正整數(shù)n,.
①當(dāng),2時(shí),顯然成立;
②假設(shè)對(duì)任意的時(shí),,下面證明時(shí),:
由題意,得,,
,,
,
.
或(負(fù)值舍去).
成立.
由①②可知,為等比數(shù)列,.
(ii)由(i)知,,,
,得,
.
設(shè),,
當(dāng)時(shí),,即在上單調(diào)減.
又,,
;,,
.
的最大值為4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為了解高一新生的體能情況,在入學(xué)后不久,組織了一次體能測試,按成績分為優(yōu)秀、良好、一般、較差四個(gè)檔次.現(xiàn)隨機(jī)抽取120名學(xué)生的成績,其條形圖如下:
(1)將優(yōu)秀、良好、一般歸為合格,較差歸為不合格,試根據(jù)條形圖完成下面的2×2列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過0.01的前提下認(rèn)為學(xué)生的成績與性別有關(guān).
合格 | 不合格 | 合計(jì) | |
男生 | |||
女生 | |||
合計(jì) |
(2)學(xué)校為了解學(xué)生以前參加課外活動(dòng)的情況,利用分層抽樣的方法從120名學(xué)生中抽取24名學(xué)生參加一個(gè)座談會(huì).
①座談會(huì)上抽取2名學(xué)生匯報(bào)以前參加課外活動(dòng)的情況,求恰好抽到測試成績一個(gè)優(yōu)秀與一個(gè)較差的學(xué)生的概率;
②為全面提高學(xué)生的體能,學(xué)校專門安排專職教師對(duì)全校測試成績較差的學(xué)生在課外活動(dòng)時(shí)進(jìn)行專項(xiàng)訓(xùn)練,通過一段時(shí)間的訓(xùn)陳后,測試合格率達(dá)到了.若某班有4名學(xué)生參加這個(gè)專項(xiàng)訓(xùn)陳,求訓(xùn)練后測試合格人數(shù)ξ的分布列與數(shù)學(xué)期望.
附:K2,其中n=a+b+c+d
P(K2≥k0) | 0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中,,,為的中點(diǎn).
(1)證明:平面;
(2)若點(diǎn)在棱上,且,求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有甲乙丙丁四個(gè)人相互之間傳球,從甲開始傳球,甲等可能地把球傳給乙丙丁中的任何一個(gè)人,依此類推.
(1)通過三次傳球后,球經(jīng)過乙的次數(shù)為ξ,求ξ的分布列和期望;
(2)設(shè)經(jīng)過n次傳球后,球落在甲手上的概率為an,
(i)求a1,a2,an;
(ii)探究:隨著傳球的次數(shù)足夠多,球落在甲乙丙丁每個(gè)人手上的概率是否相等,并簡單說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年7月1日,《上海市生活垃圾管理?xiàng)l例》正式實(shí)施,生活垃圾要按照“可回收物”、“有害垃圾”、“濕垃圾”、“干垃圾”的分類標(biāo)準(zhǔn)進(jìn)行分類,沒有垃圾分類和未投放到指定垃圾桶內(nèi)等會(huì)被罰款和行政處罰.若某上海居民提著廚房里產(chǎn)生的“濕垃圾”隨意地投放到樓下的垃圾桶,若樓下分別放有“可回收物”、“有害垃圾”、“濕垃圾”、“干垃圾”四個(gè)垃圾桶,則該居民會(huì)被罰款和行政處罰的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“科技引領(lǐng),布局未來”科技研發(fā)是企業(yè)發(fā)展的驅(qū)動(dòng)力量.2007~2018年,某企業(yè)連續(xù)12年累計(jì)研發(fā)投入達(dá)4100億元,我們將研發(fā)投入與經(jīng)營投入的比值記為研發(fā)投入占營收比,這12年間的研發(fā)投入(單位:十億元)用圖中的條形圖表示,研發(fā)投入占營收比用圖中的折線圖表示.根據(jù)折線圖和條形圖,下列結(jié)論正確的有( )
A.2012年至2013年研發(fā)投入占營收比增量相比2017年至2018年研發(fā)投入占營收比增量大
B.2013年至2014年研發(fā)投入增量相比2015年至2016年研發(fā)投入增量小
C.該企業(yè)連續(xù)12年來研發(fā)投入逐年增加
D.該企業(yè)連續(xù)12年來研發(fā)投入占營收比逐年增加
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)的導(dǎo)函數(shù)為,若函數(shù)的圖象關(guān)于直線對(duì)稱,且.
(1)求實(shí)數(shù)a、b的值;
(2)若函數(shù)恰有三個(gè)零點(diǎn),求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com