【題目】已知A (1,2),B(a,1),C(2,3),D(﹣1,b)(a,b∈R)是復(fù)平面上的四個點,且向量 , 對應(yīng)的復(fù)數(shù)分別為z1 , z2 . (Ⅰ)若z1+z2=1+i,求z1 , z2
(Ⅱ)若|z1+z2|=2,z1﹣z2為實數(shù),求a,b的值.
【答案】解:(I)向量 =(a﹣1,﹣1), =(﹣3,b﹣3)對應(yīng)的復(fù)數(shù)分別為z1=(a﹣1)﹣i,z2=﹣3+(b﹣3)i.
∴z1+z2=(a﹣4)+(b﹣4)i=1+i.
∴a﹣4=1,b﹣4=1.
解得a=b=5.
∴z1=4﹣i,z2=﹣3+2i.
(II)|z1+z2|=2,z1﹣z2為實數(shù),
∴ =2,(a+2)+(2﹣b)i∈R,
∴2﹣b=0,解得b=2,
∴(a﹣4)2+4=4,解得a=4.
∴a=4,b=2.
【解析】(I)向量 =(a﹣1,﹣1), =(﹣3,b﹣3)對應(yīng)的復(fù)數(shù)分別為z1=(a﹣1)﹣i,z2=﹣3+(b﹣3)i.利用z1+z2=(a﹣4)+(b﹣4)i=1+i.即可得出a,b.(II)|z1+z2|=2,z1﹣z2為實數(shù),可得 =2,(a+2)+(2﹣b)i∈R,即可得出.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=x2﹣2ax﹣8a2(a>0),記不等式f(x)≤0的解集為A.
(1)當(dāng)a=1時,求集合A;
(2)若(﹣1,1)A,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x3﹣2x+ex﹣ ,其中e是自然對數(shù)的底數(shù).若f(a﹣1)+f(2a2)≤0.則實數(shù)a的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)等差數(shù)列{an}的公差d>0,且a1>0,記Tn= + ++ .
(1)用a1、d分別表示T1、T2、T3 , 并猜想Tn;
(2)用數(shù)學(xué)歸納法證明你的猜想.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax2﹣(2a+1)x+lnx(a∈R) (Ⅰ)當(dāng)a>0時,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)設(shè)g(x)=f(x)+2ax,若g(x)有兩個極值點x1 , x2 , 且不等式g(x1)+g(x2)<λ(x1+x2)恒成立,求實數(shù)λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,PA⊥平面ABC,AE⊥PB,AB⊥BC,AF⊥PC,PA=AB=BC.
(1)求證:平面AEF⊥平面PBC.
(2)求二面角P-BC-A的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中, 平面, , , , , , .
(I)求異面直線與所成角的余弦值;
(II)求證: 平面;
(Ⅲ)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某幾何體的俯視圖是如圖所示的矩形,正視圖是一個底邊長為8、高為4的等腰三角形,側(cè)視圖是一個底邊長為6、高為4的等腰三角形.
(1)求該幾何體的體積;
(2)求該幾何體的表面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com