已知{}是等差數(shù)列,其前項(xiàng)和為,{}是等比數(shù)列,且=,,.
(1)求數(shù)列{}與{}的通項(xiàng)公式;
(2)記,求滿(mǎn)足不等式的最小正整數(shù)的值.
(1)(2)8
解析試題分析:(1)設(shè)數(shù)列的公差為,數(shù)列的公比為;
則
得: 6分
(2)
兩式相減得,的最小n值為8. 6分
考點(diǎn):等差數(shù)列等比數(shù)列通項(xiàng)及數(shù)列求和
點(diǎn)評(píng):求等差數(shù)列等比數(shù)列通項(xiàng)時(shí),只需將條件轉(zhuǎn)化為數(shù)列的首項(xiàng)和公差公比,進(jìn)而解方程即可;第二問(wèn)為數(shù)列求和,觀(guān)察其特點(diǎn)采用錯(cuò)位相減法,此法在求和的題目中是?嫉姆椒
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列的前n項(xiàng)和為,且.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)令,數(shù)列的前n項(xiàng)和為,若不等式對(duì)任意恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列是等差數(shù)列,且
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)令求數(shù)列前n項(xiàng)和的公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(1)已知等差數(shù)列中,,求的公差;
(2)有三個(gè)數(shù)成等比數(shù)列,它們的和等于14,它們的積等于64,求該數(shù)列的公比.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知公差大于零的等差數(shù)列的前n項(xiàng)和為,且滿(mǎn)足:,.
(1)求數(shù)列的通項(xiàng)公式;
(2)若數(shù)列是等差數(shù)列,且,求非零常數(shù)c;
(3)在(2)的條件下,設(shè),已知數(shù)列為遞增數(shù)列,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知等差數(shù)列滿(mǎn)足:,.的前n項(xiàng)和為.
(Ⅰ)求及;
(Ⅱ)令bn=(nN*),求數(shù)列的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)等差數(shù)列的公差,等比數(shù)列為公比為,且,,.
(1)求等比數(shù)列的公比的值;
(2)將數(shù)列,中的公共項(xiàng)按由小到大的順序排列組成一個(gè)新的數(shù)列,是否存在正整數(shù)(其中)使得和都構(gòu)成等差數(shù)列?若存在,求出一組的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知為等差數(shù)列,且
(1)求數(shù)列的第二項(xiàng);
(2)若成等比數(shù)列,求數(shù)列的通項(xiàng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知等差數(shù)列滿(mǎn)足:,,的前n項(xiàng)和為.
(Ⅰ)求及;
(Ⅱ)令 bn= (nN*),求數(shù)列的前n項(xiàng)和.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com