【題目】已知拋物線,過的直線與拋物線相交于兩點.

1)若點是點關(guān)于坐標(biāo)原點的對稱點,求面積的最小值;

2)是否存在垂直于軸的直線,使得被以為直徑的圓截得的弦長恒為定值?若存在,求出的方程和定值;若不存在,說明理由.

【答案】12)存在,直線的方程為;定值為

【解析】

1)設(shè),,直線的方程為,聯(lián)立直線的方程與拋物線的方程消元,然后韋達定理可得,,然后,用表示出來即可.

2)假設(shè)滿足條件的直線存在,其方程為,則以為直徑的圓的方程為,將直線方程代入,得,然后將表示出來即可.

1)依題意,點的坐標(biāo)為,可設(shè),

直線的方程為,與聯(lián)立得.

由韋達定理得:,

于是,

所以當(dāng)時,面積最小值,最小值為.

2)假設(shè)滿足條件的直線存在,其方程為,

則以為直徑的圓的方程為

將直線方程代入,得

.

設(shè)直線與以為直徑的圓的交點為,,

,,于是有

.

當(dāng),即時,為定值.

故滿足條件的直線存在,其方程為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)求處的切線方程:

2)已知實數(shù)時,求證:函數(shù)的圖象與直線3個交點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方體ABCDA1B1C1D1中,M,NP分別是C1D1,BCA1D1的中點,有下列四個結(jié)論:

APCM是異面直線;②AP,CM,DD1相交于一點;③MNBD1;

MN∥平面BB1D1D

其中所有正確結(jié)論的編號是(  )

A.①④B.②④C.①④D.②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為平面上一點,為直線上任意一點,過點作直線的垂線,設(shè)線段的中垂線與直線交于點,記點的軌跡為.

1)求軌跡的方程;

2)過點作互相垂直的直線,其中直線與軌跡交于點、,直線與軌跡交于點、,設(shè)點,分別是的中點,求的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形ABCD和矩形ACEF中,AB,CE=1,CE平面ABCD

(1)求異面直線DFBE所成角的余弦值;

(2)求二面角ADFB的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)當(dāng)時,求的極值;

2)當(dāng)時,,求整數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)存在唯一的極值點

1)求實數(shù)的取值范圍;

2)若,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】家校連心,立德樹人——重溫愛國故事,弘揚愛國主義精神社會課堂活動中,王老師組建了一個微信群,群的成員由學(xué)生、家長、老師和講解員共同組成.已知該微信群中男學(xué)生人數(shù)多于女生人數(shù),女學(xué)生人數(shù)多于家長人數(shù),家長人數(shù)多于教師人數(shù),教師人數(shù)多于講解員人數(shù),講解員人數(shù)的兩倍多于男生人數(shù).若把這5類人群的人數(shù)作為一組數(shù)據(jù),當(dāng)該微信群總?cè)藬?shù)取最小值時,這組數(shù)據(jù)的中位數(shù)是(

A.5B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)為坐標(biāo)原點,動點在圓上,過軸的垂線,垂足為,點滿足

1)求點的軌跡的方程;

2)直線上的點滿足.過點作直線垂直于線段于點

(。┳C明:恒過定點;

(ⅱ)設(shè)線段于點,求四邊形的面積.

查看答案和解析>>

同步練習(xí)冊答案