【題目】下列說法中正確的有______
①平均數不受少數幾個極端值的影響,中位數受樣本中的每一個數據影響;
②拋擲兩枚硬幣,出現“兩枚都是正面朝上”、“兩枚都是反面朝上”、“恰好一枚硬幣正面朝上”的概率一樣大
③用樣本的頻率分布估計總體分布的過程中,樣本容量越大,估計越準確.
④向一個圓面內隨機地投一個點,如果該點落在圓內任意一點都是等可能的,則該隨機試驗的數學模型是古典概型.
科目:高中數學 來源: 題型:
【題目】已知雙曲線的離心率為,過點A(0,-b)和B(a,0)的直線與原點的距離為.
(1)求雙曲線C的方程;
(2)直線y=kx+m(k≠0, m≠0)與該雙曲線C交于不同的兩點C,D,且C,D兩點都在以點A為圓心的同一圓上,求m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某中學采取分層抽樣的方法從應屆高三學生中按照性別抽出20名學生作為樣本,其選報文科理科的情況如下表所示.
男 | 女 | |
文科 | 2 | 5 |
理科 | 10 | 3 |
(1)若在該樣本中從報考文科的女學生A.B.C.D.E中隨機地選出2人召開座談會,試求2人中有A的概率;
(2)用假設檢驗的方法分析有多大的把握認為該中學的高三學生選報文理科與性別有關?
參考公式和數據:.
P(≥) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
2.07 | 2.71 | 3.84 | 5.02 | 6.64 | 7.88 | 10.83 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】我國明代珠算家程大位的名著《直指算法統(tǒng)宗》中有如下問題:“今有白米一百八十石,令三人從上及和減率分之,只云甲多丙米三十六石,問:各該若干?”其意思為:“今有白米一百八十石,甲、乙、丙三人來分,他們分得的白米數構成等差數列,只知道甲比丙多分三十六石,那么三人各分得多少白米?”請問:乙應該分得( )白米
A. 96石B. 78石C. 60石D. 42石
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】市某機構為了調查該市市民對我國申辦年足球世界杯的態(tài)度,隨機選取了位市民進行調查,調查結果統(tǒng)計如下:
支持 | 不支持 | 總計 | |
男性市民 | |||
女性市民 | |||
總計 |
(1)根據已知數據,把表格數據填寫完整;
(2)能否在犯錯誤的概率不超過的前提下認為支持申辦年足球世界杯與性別有關?請說明理由.
附:,其中.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】圖,從甲地到丙地要經過兩個十字路口(十字路口與十字路口),從乙地到丙地也要經過兩個十字路口(十字路口與十字路口),設各路口信號燈工作相互獨立,且在,,,路口遇到紅燈的概率分別為,,,.
(1)求一輛車從乙地到丙地至少遇到一個紅燈的概率;
(2)若小方駕駛一輛車從甲地出發(fā),小張駕駛一輛車從乙地出發(fā),他們相約在丙地見面,記表示這兩人見面之前車輛行駛路上遇到的紅燈的總個數,求的分布列及數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=1+(1+a)x﹣x2﹣x3 , 其中a>0.
(1)討論f(x)在其定義域上的單調性;
(2)當x∈[0,1]時,求f(x)取得最大值和最小值時的x的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了增強消防安全意識,某中學做了一次消防知識講座,從男生中隨機抽取了50人,從女生中隨機抽取了70人參加消防知識測試,統(tǒng)計數據得到如下的列聯表:
優(yōu)秀 | 非優(yōu)秀 | 總計 | |
男生 | 15 | 35 | 50 |
女生 | 30 | 40 | 70 |
總計 | 45 | 75 | 120 |
(1)試判斷能否有90%的把握認為消防知識的測試成績優(yōu)秀與否與性別有關;
(2)為了宣傳消防安全知識,從該校測試成績獲得優(yōu)秀的同學中采用分層抽樣的方法,隨機選出6名組成宣傳小組.現從這6人中隨機抽取2名到校外宣傳,求到校外宣傳的同學中至少有1名是男生的概率。
附:
P(K2≥k0) | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
k0 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com