【題目】已知函數(shù)

1)若函數(shù)處取得極值1,證明:

2)若恒成立,求實數(shù)的取值范圍.

【答案】1)證明見詳解;(2

【解析】

1)求出函數(shù)的導(dǎo)函數(shù),由處取得極值1,可得.解出,構(gòu)造函數(shù),分析其單調(diào)性,結(jié)合,即可得到的范圍,命題得證;
2)由分離參數(shù),得到恒成立,構(gòu)造函數(shù),求導(dǎo)函數(shù),再構(gòu)造函數(shù),進(jìn)行二次求導(dǎo).,則上單調(diào)遞增.根據(jù)零點存在定理可知有唯一零點,且.由此判斷出時,單調(diào)遞減,時,單調(diào)遞增,則,即.,再次構(gòu)造函數(shù),求導(dǎo)分析單調(diào)性,從而得,即,最終求得,則.

解:(1)由題知,

∵函數(shù),處取得極值1,

,且,

,

,

,則

為增函數(shù),

,即成立.

2)不等式恒成立,

即不等式恒成立,即恒成立,

,則

,則,

,,

上單調(diào)遞增,且,

有唯一零點,且,

當(dāng)時,,,單調(diào)遞減;

當(dāng)時,,單調(diào)遞增.

,

整理得

,

,則方程等價于

上恒大于零,

上單調(diào)遞增,

.

,

∴實數(shù)的取值范圍為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若函數(shù)在其定義域內(nèi)單調(diào)遞增,求實數(shù)的最大值;

2)若存在正實數(shù)對,使得當(dāng)時,能成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左頂點為,左、右焦點分別為,離心率為,是橢圓上的一個動點(不與左、右頂點重合),且的周長為6,點關(guān)于原點的對稱點為,直線交于點.

1)求橢圓方程;

2)若直線與橢圓交于另一點,且,求點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱錐中,,,側(cè)面底面

(1)作出平面與平面的交線,并證明平面

(2)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《易經(jīng)》是中國傳統(tǒng)文化中的精髓,如圖是易經(jīng)八卦(含乾、坤、巽、震、坎、離、艮、兌八卦),每一卦由三根線組成(""表示一根陽線,""表示一根陰線),從八卦中任取兩卦,這兩卦的六根線中恰有兩根陽線,四根陰線的概率為_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著我國綜合國力的不斷增強(qiáng),不少綜合性娛樂場所都引進(jìn)了摩天輪這一娛樂設(shè)施.(如圖1)有一半徑為40m的摩天輪,軸心距地面50m,摩天輪按逆時針方向做勻速旋轉(zhuǎn),轉(zhuǎn)一周需要3min.點與點都在摩天輪上,且點相對于點落后1min,當(dāng)點在摩天輪的最低點處時開始計時,以軸心為坐標(biāo)原點,平行于地面且在摩天輪所在平面內(nèi)的直線為軸,建立圖2所示的平面直角坐標(biāo)系.

1)若,求點的縱坐標(biāo)關(guān)于時間的函數(shù)關(guān)系式;

2)若,求點距離地面的高度關(guān)于時間的函數(shù)關(guān)系式,并求時,點離地面的高度(結(jié)果精確到0.1,計算所用數(shù)據(jù):

3)若,當(dāng),兩點距離地面的高度差不超過時,求時間的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】底面為菱形的直四棱柱,被一平面截取后得到如圖所示的幾何體.,.

1)求證:

2)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,離心率為,是橢圓上一點,且面積的最大值為1.

1)求橢圓的方程;

2)過的直線交橢圓于兩點,求的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若不等式時恒成立,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案