【題目】已知函數(shù).
(1)若函數(shù)在其定義域內(nèi)單調(diào)遞增,求實(shí)數(shù)的最大值;
(2)若存在正實(shí)數(shù)對(duì),使得當(dāng)時(shí),能成立,求實(shí)數(shù)的取值范圍.
【答案】(1)4(2)
【解析】
(1)先求導(dǎo),再根據(jù)導(dǎo)數(shù)和函數(shù)的單調(diào)性的關(guān)系即可求出的范圍,
(2)根據(jù)題意可得,因此原問(wèn)題轉(zhuǎn)化為存在正實(shí)數(shù)使得等式成立,構(gòu)造函數(shù),利用導(dǎo)數(shù)求出函數(shù)的值域,即可求出的取值范圍.
解析:(1)由題意得,
函數(shù)在其定義域內(nèi)單調(diào)遞增,則在內(nèi)恒成立,
故.
因?yàn)?/span>(等號(hào)成立當(dāng)且僅當(dāng)即)
所以(經(jīng)檢驗(yàn)滿(mǎn)足題目),所以實(shí)數(shù)的最大值為4.
(2)由題意得,則
,因此原問(wèn)題轉(zhuǎn)化為:
存在正數(shù)使得等式成立.
整理并分離得,記,
要使得上面的方程有解,下面求的值域,
,故在上是單調(diào)遞減,
在上單調(diào)遞增,
所以,
又,故當(dāng),,
綜上所述,,
即實(shí)數(shù)的取值范圍為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(xiàn)的內(nèi)接等邊三角形的面積為(其中為坐標(biāo)原點(diǎn)).
(1)試求拋物線(xiàn)的方程;
(2)已知點(diǎn)兩點(diǎn)在拋物線(xiàn)上,是以點(diǎn)為直角頂點(diǎn)的直角三角形.
①求證:直線(xiàn)恒過(guò)定點(diǎn);
②過(guò)點(diǎn)作直線(xiàn)的垂線(xiàn)交于點(diǎn),試求點(diǎn)的軌跡方程,并說(shuō)明其軌跡是何種曲線(xiàn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知橢圓(),圓(),若圓的一條切線(xiàn)與橢圓相交于兩點(diǎn).
(1)當(dāng), 時(shí),若點(diǎn)都在坐標(biāo)軸的正半軸上,求橢圓的方程;
(2)若以為直徑的圓經(jīng)過(guò)坐標(biāo)原點(diǎn),探究是否滿(mǎn)足,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線(xiàn)的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為
(1)在曲線(xiàn)上任取一點(diǎn),連接,在射線(xiàn)上取一點(diǎn),使,求點(diǎn)軌跡的極坐標(biāo)方程;
(2)在曲線(xiàn)上任取一點(diǎn),在曲線(xiàn)上任取一點(diǎn),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱柱中,是邊長(zhǎng)為2的等邊三角形,,,.
(1)證明:平面平面;
(2),分別是,的中點(diǎn),是線(xiàn)段上的動(dòng)點(diǎn),若二面角的平面角的大小為,試確定點(diǎn)的位置.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(xiàn)的焦點(diǎn)到準(zhǔn)線(xiàn)的距離為,直線(xiàn)與拋物線(xiàn)交于,兩點(diǎn),過(guò)這兩點(diǎn)分別作拋物線(xiàn)的切線(xiàn),且這兩條切線(xiàn)相交于點(diǎn).
(1)若點(diǎn)的坐標(biāo)為,求的值;
(2)設(shè)線(xiàn)段的中點(diǎn)為,過(guò)的直線(xiàn)與線(xiàn)段為直徑的圓相切,切點(diǎn)為,且直線(xiàn)與拋物線(xiàn)交于,兩點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(xiàn)的焦點(diǎn)到準(zhǔn)線(xiàn)的距離為,直線(xiàn)與拋物線(xiàn)交于,兩點(diǎn),過(guò)這兩點(diǎn)分別作拋物線(xiàn)的切線(xiàn),且這兩條切線(xiàn)相交于點(diǎn).
(1)若點(diǎn)的坐標(biāo)為,求的值;
(2)設(shè)線(xiàn)段的中點(diǎn)為,過(guò)的直線(xiàn)與線(xiàn)段為直徑的圓相切,切點(diǎn)為,且直線(xiàn)與拋物線(xiàn)交于,兩點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線(xiàn)的參數(shù)方程是(是參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,直線(xiàn)的極坐標(biāo)方程為,其傾斜角為.
(Ⅰ)證明直線(xiàn)恒過(guò)定點(diǎn),并寫(xiě)出直線(xiàn)的參數(shù)方程;
(Ⅱ)在(Ⅰ)的條件下,若直線(xiàn)與曲線(xiàn)交于,兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)若函數(shù)在處取得極值1,證明:
(2)若恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com