【題目】如圖,幾何體中,為邊長(zhǎng)為2的正方形,為直角梯形,,,,,.
(1)求證:;
(2)求二面角的大小.
【答案】(1)證明見(jiàn)解析;(2).
【解析】
試題分析:(1)證明:由題意得,平面,
又平面,再由勾股定理得
平面;(2)以為原點(diǎn),,,所在直線(xiàn)分別為,,軸建立如圖所示的空間直角坐標(biāo)系,平面的法向量,平面的法向量為 .
試題解析: (1)證明:由題意得,,,,
∴平面,∴,
∵四邊形為正方形,∴,
由,
∴平面,∴,
又∵四邊形為直角梯形,,,,,
∴,,則有,∴,
由,∴平面.
(2)由(1)知,,所在的直線(xiàn)相互垂直,故以為原點(diǎn),,,所在直線(xiàn)分別為,,軸建立如圖所示的空間直角坐標(biāo)系,
可得,,,,,,
由(1)知平面的法向量為,
∴,,
設(shè)平面的法向量為,
則有即即
令,則,
設(shè)二面角的大小為,
,
∵,∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正四棱錐中,O為頂點(diǎn)S在底面ABCD內(nèi)的投影,P為側(cè)棱SD的中點(diǎn),且.
(1)證明:平面PAC.
(2)求直線(xiàn)BC與平面PAC的所成角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校高一年級(jí)開(kāi)設(shè)了豐富多彩的校本課程,現(xiàn)從甲、乙兩個(gè)班隨機(jī)抽取了5名學(xué)生校本課程的學(xué)分,統(tǒng)計(jì)如下表.
甲 | 8 | 11 | 14 | 15 | 22 |
乙 | 6 | 7 | 10 | 23 | 24 |
用分別表示甲、乙兩班抽取的5名學(xué)生學(xué)分的方差,計(jì)算兩個(gè)班學(xué)分的方差.得______,并由此可判斷成績(jī)更穩(wěn)定的班級(jí)是______班.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知橢圓,是長(zhǎng)軸的一個(gè)端點(diǎn),弦過(guò)橢圓的中心,且.
(1)求橢圓的方程.
(2)過(guò)橢圓右焦點(diǎn)的直線(xiàn),交橢圓于兩點(diǎn),交直線(xiàn)于點(diǎn),判定直線(xiàn)的斜率是否依次構(gòu)成等差數(shù)列?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從6名男醫(yī)生和3名女醫(yī)生中選出5人組成一個(gè)醫(yī)療小組,請(qǐng)解答下列問(wèn)題:
(1)如果這個(gè)醫(yī)療小組中男女醫(yī)生都不能少于2人,共有多少種不同的建組方案?(用數(shù)字作答)
(2)男醫(yī)生甲要擔(dān)任醫(yī)療小組組長(zhǎng),所以必選,而且醫(yī)療小組必須男女醫(yī)生都有,共有多少種不同的建組方案?
(3)男醫(yī)生甲與女醫(yī)生乙不被同時(shí)選中的概率.(化成最簡(jiǎn)分?jǐn)?shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(,)為奇函數(shù),且相鄰兩對(duì)稱(chēng)軸間的距離為.
(1)當(dāng)時(shí),求的單調(diào)遞減區(qū)間;
(2)將函數(shù)的圖象沿軸方向向右平移個(gè)單位長(zhǎng)度,再把橫坐標(biāo)縮短到原來(lái)的(縱坐標(biāo)不變),得到函數(shù)的圖象.當(dāng)時(shí),求函數(shù)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB為圓O的直徑,點(diǎn)E、F在圓O上,AB∥EF,矩形ABCD所在的平面與圓O所在的平面互相垂直.已知AB=2,EF=1.
(Ⅰ)求證:平面DAF⊥平面CBF;
(Ⅱ)當(dāng)AD=1時(shí),求直線(xiàn)FB與平面DFC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某蔬菜批發(fā)商分別在甲、乙兩市場(chǎng)銷(xiāo)售某種蔬菜(兩個(gè)市場(chǎng)的銷(xiāo)售互不影響),己知該蔬菜每售出1噸獲利500元,未售出的蔬菜低價(jià)處理,每噸虧損100 元.現(xiàn)統(tǒng)計(jì)甲、乙兩市場(chǎng)以往100個(gè)銷(xiāo)售周期該蔬菜的市場(chǎng)需求量的頻數(shù)分布,如下表:
以市場(chǎng)需求量的頻率代替需求量的概率.設(shè)批發(fā)商在下個(gè)銷(xiāo)售周期購(gòu)進(jìn)噸該蔬菜,在 甲、乙兩市場(chǎng)同時(shí)銷(xiāo)售,以(單位:噸)表示下個(gè)銷(xiāo)售周期兩市場(chǎng)的需求量,(單位:元)表示下個(gè)銷(xiāo)售周期兩市場(chǎng)的銷(xiāo)售總利潤(rùn).
(Ⅰ)當(dāng)時(shí),求與的函數(shù)解析式,并估計(jì)銷(xiāo)售利潤(rùn)不少于8900元的槪率;
(Ⅱ)以銷(xiāo)售利潤(rùn)的期望為決策依據(jù),判斷與應(yīng)選用哪—個(gè).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:的左、右頂點(diǎn)分別為,,圓上有一動(dòng)點(diǎn),在軸上方,點(diǎn),直線(xiàn)交橢圓于點(diǎn),連接,.
(1)若,求的面積;
(2)設(shè)直線(xiàn),的斜率存在且分別為,,若,求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com