【題目】已知在直三棱柱中,,,,,,點在線段上.
(Ⅰ)證明:;
(Ⅱ)求平面與平面所成銳二面角的余弦值.
【答案】(I)證明見解析;(II).
【解析】
試題分析:(1)根據(jù)邊角關(guān)系得到,進而得到,,,∴,又因為是直三棱柱,故,進而得到線線垂直;(2)建立坐標系,求平面的法向量,平面的法向量,根據(jù)向量夾角的求法得到余弦值.
解析:
(Ⅰ)不妨設(shè),則,,,.
在和中,,,
∴,∴,
∴ ,∴,即;
∵,,∴,
∵為直三棱柱,∴平面,∴;
∴平面,∵點在線段上,∴.
(Ⅱ)由(Ⅰ)知,平面,建立如圖所示的空間直角坐標系,
不妨設(shè),則,,,,,,∴,,,.
設(shè)平面的法向量,則,
即,取,則,,
則平面的一個法向量;
設(shè)平面的法向量,則,即,
取,則,,則平面的一個法向量;
∴ ,
故平面與平面所成銳二面角的余弦值為.
科目:高中數(shù)學 來源: 題型:
【題目】甲、乙、丙、丁四位同學中僅有一人申請了北京大學的自主招生考試,當他們被問到誰申請了北京大學的自主招生考試時,甲說:“丙或丁申請了”;乙說:“丙申請了”;丙說:“甲和丁都沒有申請”;丁說:“乙申請了”,如果這四位同學中只有兩人說的是對的,那么申請了北京大學的自主招生考試的同學是______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中;
(Ⅰ)若函數(shù)在處取得極值,求實數(shù)的值,
(Ⅱ)在(Ⅰ)的結(jié)論下,若關(guān)于的不等式,當時恒成立,求的值.
(Ⅲ)令,若關(guān)于的方程在內(nèi)至少有兩個解,求出實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某市為了引導居民合理用水,居民生活用水實行二級階梯式水價計量辦法,具體如下:第一階梯,每戶居民月用水量不超過12噸,價格為4元/噸;第二階梯,每戶居民月用水量超過12噸,超過部分的價格為8元/噸.為了了解全市居民月用水量的分布情況,通過抽樣獲得了100戶居民的月用水量(單位:噸),將數(shù)據(jù)按照, ,…, 分成8組,制成了如圖1所示的頻率分布直方圖.
(圖1) (圖2)
(Ⅰ)求頻率分布直方圖中字母的值,并求該組的頻率;
(Ⅱ)通過頻率分布直方圖,估計該市居民每月的用水量的中位數(shù)的值(保留兩位小數(shù));
(Ⅲ)如圖2是該市居民張某2016年1~6月份的月用水費(元)與月份的散點圖,其擬合的線性回歸方程是. 若張某2016年1~7月份水費總支出為312元,試估計張某7月份的用水噸數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知的直角頂點在軸上,點,為斜邊的中點,且平行于軸.
(1)求點的軌跡方程;
(2)設(shè)點的軌跡為曲線,直線與的另一個交點為.以為直徑的圓交軸于、,記此圓的圓心為,,求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓: 的離心率為,且橢圓過點.過點做兩條相互垂直的直線、分別與橢圓交于、、、四點.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)若, ,探究:直線是否過定點?若是,請求出定點坐標;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
(1)討論函數(shù)f(x)的極值點的個數(shù);
(2)若f(x)有兩個極值點x1、x2,證明:f(x1)+f(x2)>3-4ln2.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知圓,拋物線的頂點為,準線的方程為,為拋物線上的動點,過點作圓的兩條切線與軸交于.
(Ⅰ)求拋物線的方程;
(Ⅱ)若,求△面積的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com