【題目】已知橢圓:與直線:,:,過橢圓上的一點作,的平行線,分別交,于,兩點,若為定值,則橢圓的離心率為______.
【答案】
【解析】
方法一:由題意可知, 點的位置與橢圓的離心率無關(guān).因而可分別設(shè)和,即可表示出交點的坐標.求得的長,令兩種情況下的相等,即可得的關(guān)系,進而求得橢圓的離心率.
方法二:根據(jù)橢圓的參數(shù)方程,可設(shè),進而表示出直線與,由直線交點的求法求得交點的坐標.即可根據(jù)兩點間距離公式表示出.根據(jù)同角三角函數(shù)關(guān)系式的性質(zhì),即可得的關(guān)系,進而求得橢圓的離心率.
方法一:特殊位置分析法
當時,:,:
由解得,同理.所以
當時,:,:
由解得,同理,所以;
因為定值,所以,
此時
故答案為:
方法二:設(shè),則:
:,
由
所以
同理
所以
若定值,則
所以
故答案為:
科目:高中數(shù)學(xué) 來源: 題型:
【題目】正方體中,過作直線,若直線與平面中的直線所成角的最小值為,且直線與直線所成角為,則滿足條件的直線的條數(shù)為( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以下說法:
①三條直線兩兩相交,則他們一定共面.
②存在兩兩相交的三個平面可以把空間分成9部分.
③如圖是正方體的平面展開圖,則在這個正方體中,一定有平面且平面平面.
④四面體所有的棱長都相等,則它的外接球表面積與內(nèi)切球表面積之比是9.
其中正確的是______
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司制定了一個激勵銷售人員的獎勵方案:對于每位銷售人員,均以10萬元為基數(shù),若銷售利潤沒超出這個基數(shù),則可獲得銷售利潤的5%的獎金;若銷售利潤超出這個基數(shù)(超出的部分是a萬元),則可獲得萬元的獎金.記某位銷售人員獲得的獎金為y(單位:萬元),其銷售利潤為x(單位:萬元).
(1)寫出這位銷售人員獲得的獎金y與其銷售利潤x之間的函數(shù)關(guān)系式;
(2)如果這位銷售人員獲得了萬元的獎金,那么他的銷售利潤是多少萬元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的幾何體中,四邊形是菱形,是矩形,,,, ,為的中點.
(1)平面平面
(2)在線段上是否存在點,使二面角的大小為?若存在,求出的長度;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com