【題目】已知橢圓:與直線:,:,過橢圓上的一點,的平行線,分別交,,兩點,若為定值,則橢圓的離心率為______.

【答案】

【解析】

方法一:由題意可知, 的位置與橢圓的離心率無關(guān).因而可分別設(shè),即可表示出交點的坐標.求得的長,令兩種情況下的相等,即可得的關(guān)系,進而求得橢圓的離心率.

方法二:根據(jù)橢圓的參數(shù)方程,可設(shè),進而表示出直線,由直線交點的求法求得交點的坐標.即可根據(jù)兩點間距離公式表示出.根據(jù)同角三角函數(shù)關(guān)系式的性質(zhì),即可得的關(guān)系,進而求得橢圓的離心率.

方法一:特殊位置分析法

,:,:

解得,同理.所以

,:,:

解得,同理,所以;

因為定值,所以,

此時

故答案為:

方法二:設(shè),:

:,

所以

同理

所以

定值,

所以

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的不等式的解集為

(1)求a,b的值.

(2)當時,解關(guān)于x的不等式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知球O為三棱錐SABC的外接球, ,則球O的表面積是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】能夠使得命題“曲線上存在四個點滿足四邊形是正方形”為真命題的一個實數(shù)的值為__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】正方體中,過作直線,若直線與平面中的直線所成角的最小值為,且直線與直線所成角為,則滿足條件的直線的條數(shù)為( )

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為菱形,,,且.

(1)求證:平面平面;

(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以下說法:

①三條直線兩兩相交,則他們一定共面.

②存在兩兩相交的三個平面可以把空間分成9部分.

③如圖是正方體的平面展開圖,則在這個正方體中,一定有平面且平面平面.

④四面體所有的棱長都相等,則它的外接球表面積與內(nèi)切球表面積之比是9.

其中正確的是______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司制定了一個激勵銷售人員的獎勵方案:對于每位銷售人員,均以10萬元為基數(shù),若銷售利潤沒超出這個基數(shù),則可獲得銷售利潤的5%的獎金;若銷售利潤超出這個基數(shù)(超出的部分是a萬元),則可獲得萬元的獎金.記某位銷售人員獲得的獎金為y(單位:萬元),其銷售利潤為x(單位:萬元).

(1)寫出這位銷售人員獲得的獎金y與其銷售利潤x之間的函數(shù)關(guān)系式;

(2)如果這位銷售人員獲得了萬元的獎金,那么他的銷售利潤是多少萬元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的幾何體中,四邊形是菱形,是矩形,,, ,的中點.

1)平面平面

2)在線段上是否存在點,使二面角的大小為?若存在,求出的長度;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案