【題目】已知函數(shù).

1)當(dāng)時(shí),求函數(shù)的最大值;

2)若函數(shù)存在兩個(gè)極值點(diǎn),,求證:.

【答案】1)當(dāng)時(shí),的最大值為,當(dāng)時(shí),的最大值為1;(2)證明見(jiàn)解析.

【解析】

1)求出函數(shù)的導(dǎo)數(shù),分為,三種情況,結(jié)合導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,繼而求出最大值.

2)由函數(shù)存在兩個(gè)極值點(diǎn)可知上存在兩不等的實(shí)根,令,從而可知,可求出的取值范圍,結(jié)合韋達(dá)定理可求出,結(jié)合令,在上的單調(diào)性,可證明.

解:(1)由題意知,定義域?yàn)?/span>,且,

當(dāng)時(shí),解得,此時(shí)對(duì)成立,

上是增函數(shù),此時(shí)最大值為,

當(dāng)時(shí),由,由

,則時(shí),;時(shí),

所以上是減函數(shù),在上是增函數(shù),又

則當(dāng),即時(shí),此時(shí),上的最大值為

當(dāng),即時(shí),上的最大值為,

綜上,當(dāng)時(shí),函數(shù)的最大值為,當(dāng)時(shí),函數(shù)的最大值為1.

2)要使存在兩個(gè)極值點(diǎn),則上存在兩不等的實(shí)根,

,則對(duì)稱軸為,則,解得,

由韋達(dá)定理知,

.

,上單調(diào)遞減,

時(shí),.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市教育局為了監(jiān)控某校高一年級(jí)的素質(zhì)教育過(guò)程,從該校高一年級(jí)16個(gè)班隨機(jī)抽取了16個(gè)樣本成績(jī),制表如下:

抽取次序

1

2

3

4

5

6

7

8

測(cè)評(píng)成績(jī)

95

96

96

90

95

98

98

97

抽取次序

9

10

11

12

13

14

15

16

測(cè)評(píng)成績(jī)

97

95

96

98

99

96

99

96

為抽取的第個(gè)學(xué)生的素質(zhì)教育測(cè)評(píng)成績(jī),,經(jīng)計(jì)算得,,,以下計(jì)算精確到0.01.

1)求的相關(guān)系數(shù),并回答是否可以認(rèn)為具有較強(qiáng)的相關(guān)性;

2)在抽取的樣本成績(jī)中,如果出現(xiàn)了在之外的成績(jī),就認(rèn)為本學(xué)期的素質(zhì)教育過(guò)程可能出現(xiàn)了異常情況,需對(duì)本學(xué)期的素質(zhì)教學(xué)過(guò)程進(jìn)行反思,同時(shí)對(duì)下學(xué)期的素質(zhì)教育過(guò)程提出指導(dǎo)性的建議,從該校抽樣的結(jié)果來(lái)看,是否需對(duì)本學(xué)期的素質(zhì)教學(xué)過(guò)程進(jìn)行反思,同時(shí)對(duì)下學(xué)期的素質(zhì)教育過(guò)程提出指導(dǎo)性的建議?

附:樣本的相關(guān)系數(shù),若,則可以認(rèn)為兩個(gè)變量具有較強(qiáng)的線性相關(guān)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著生活水平的提高和人們對(duì)健康生活的重視,越來(lái)越多的人加入到健身運(yùn)動(dòng)中.國(guó)家統(tǒng)計(jì)局?jǐn)?shù)據(jù)顯示,2019年有4億國(guó)人經(jīng)常參加體育鍛煉.某健身房從參與健身的會(huì)員中隨機(jī)抽取100人,對(duì)其每周參與健身的天數(shù)和2019年在該健身房所有消費(fèi)金額(單位:元)進(jìn)行統(tǒng)計(jì),得到以下統(tǒng)計(jì)表及統(tǒng)計(jì)圖:

平均每周健身天數(shù)

不大于2

34

不少于5

人數(shù)(男)

20

35

9

人數(shù)(女)

10

20

6

若某人平均每周進(jìn)行健身天數(shù)不少于5,則稱其為“健身達(dá)人”.該健身房規(guī)定消費(fèi)金額不多于1600元的為普通會(huì)員,超過(guò)1600元但不超過(guò)3200元的為銀牌會(huì)員,超過(guò)3200元的為金牌會(huì)員.

1)已知金牌會(huì)員都是健身達(dá)人,現(xiàn)從健身達(dá)人中隨機(jī)抽取2人,求他們均是金牌會(huì)員的概率;

2)能否在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為性別和是否為“健身達(dá)人”有關(guān)系?

3)該健身機(jī)構(gòu)在2019年年底針對(duì)這100位消費(fèi)者舉辦一次消費(fèi)返利活動(dòng),現(xiàn)有以下兩種方案:

方案一:按分層抽樣從普通會(huì)員、銀牌會(huì)員和金牌會(huì)員中共抽取25位“幸運(yùn)之星”,分別給予188元,288元,888元的幸運(yùn)獎(jiǎng)勵(lì);

方案二:每位會(huì)員均可參加摸獎(jiǎng)游戲,游戲規(guī)則如下:摸獎(jiǎng)箱中裝有5張形狀大小完全一樣的卡片,其中3張印跑步機(jī)圖案、2張印動(dòng)感單車圖案,有放回地摸三次卡片,每次只能摸一張,若摸到動(dòng)感單車的總數(shù)為2,則獲得100元獎(jiǎng)勵(lì),若摸到動(dòng)感單車的總數(shù)為3,則獲得200元獎(jiǎng)勵(lì),其他情況不給予獎(jiǎng)勵(lì).規(guī)定每個(gè)普通會(huì)員只能參加1次摸獎(jiǎng)游戲,每個(gè)銀牌會(huì)員可參加2次摸獎(jiǎng)游戲,每個(gè)金牌會(huì)員可參加3次摸獎(jiǎng)游戲(每次摸獎(jiǎng)結(jié)果相互獨(dú)立).

請(qǐng)你比較該健身房采用哪一種方案時(shí),在此次消費(fèi)返利活動(dòng)中的支出較少,并說(shuō)明理由.

附:,其中為樣本容量.

0.50

0.25

0.10

0.05

0.010

0.005

0.455

1.323

2.706

3.841

6.636

7.879

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),

1)當(dāng)時(shí),求的單調(diào)區(qū)間;

2)當(dāng),討論的零點(diǎn)個(gè)數(shù);

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司有l000名員工,其中男性員工400名,采用分層抽樣的方法隨機(jī)抽取100名員工進(jìn)行5G手機(jī)購(gòu)買意向的調(diào)查,將計(jì)劃在今年購(gòu)買5G手機(jī)的員工稱為追光族,計(jì)劃在明年及明年以后才購(gòu)買5G手機(jī)的員工稱為觀望者調(diào)查結(jié)果發(fā)現(xiàn)抽取的這100名員工中屬于追光族的女性員工和男性員工各有20.

(Ⅰ)完成下列列聯(lián)表,并判斷是否有的把握認(rèn)為該公司員工屬于追光族性別有關(guān);

屬于追光族

屬于觀望者

合計(jì)

女性員工

男性員工

合計(jì)

100

(Ⅱ)已知被抽取的這l00名員工中有6名是人事部的員工,這6名中有3名屬于追光族現(xiàn)從這6名中隨機(jī)抽取3名,求抽取到的3名中恰有1名屬于追光族的概率.

附:,其中.

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某籃球隊(duì)甲、乙兩名運(yùn)動(dòng)員練習(xí)罰球,每人練習(xí)10組,每組罰球40個(gè).命中個(gè)數(shù)的莖葉圖如圖,則下面結(jié)論中錯(cuò)誤的一個(gè)是(  )

A. 甲的極差是29 B. 甲的中位數(shù)是24

C. 甲罰球命中率比乙高 D. 乙的眾數(shù)是21

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在多邊形中,四邊形為等腰梯形,,,四邊形為直角梯形,.以為折痕把等腰梯形折起,使得平面平面,如圖2所示.

1)證明:平面

2)求直線與平面所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】企業(yè)為了監(jiān)控某種零件的一條流水生產(chǎn)線的產(chǎn)品質(zhì)量,檢驗(yàn)員從該生產(chǎn)線上隨機(jī)抽取100個(gè)零件,測(cè)量其尺寸(單位:)并經(jīng)過(guò)統(tǒng)計(jì)分析,得到這100個(gè)零件的平均尺寸為10,標(biāo)準(zhǔn)差為0.5.企業(yè)規(guī)定:若,該零件為一等品,企業(yè)獲利20元;若,該零件為二等品,企業(yè)獲利10元;否則,該零件為不合格品,企業(yè)損失40.

1)在某一時(shí)刻內(nèi),依次下線10個(gè)零件,如果其中出現(xiàn)了不合格品,就認(rèn)為這條生產(chǎn)線在這一天的生產(chǎn)過(guò)程可能出現(xiàn)了異常情況,需對(duì)當(dāng)天的生產(chǎn)過(guò)程進(jìn)行檢查若這10個(gè)零件的尺寸分別為9.610.5,9.810.1,10.79.4,10.9,9.510,10.9,則從這一天抽檢的結(jié)果看,是否需要對(duì)當(dāng)天的生產(chǎn)過(guò)程進(jìn)行檢查?

2)將樣本的估計(jì)近似地看作總體的估計(jì)通過(guò)檢驗(yàn)發(fā)現(xiàn),該零件的尺寸服從正態(tài)分布.其中近似為樣本平均數(shù),近似為樣本方差.

i)從下線的零件中隨機(jī)抽取20件,設(shè)其中為合格品的個(gè)數(shù)為,求的數(shù)學(xué)期望(結(jié)果保留整數(shù))

ii)試估計(jì)生產(chǎn)10000個(gè)零件所獲得的利潤(rùn).

附:若隨機(jī)變量服從正態(tài)分布,,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱中,為正三角形,,,點(diǎn)在線段的中點(diǎn),點(diǎn)為線段的中點(diǎn).

1)在線段上是否存在點(diǎn),使得平面?若存在,指出點(diǎn)的位置;若不存在,請(qǐng)說(shuō)明理由.

2)求三棱錐的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案