【題目】已知函數(shù)f(x)=ax-1(x≥0).其中a>0,a≠1.

(1)若f(x)的圖象經(jīng)過點(,2),求a的值;

(2)求函數(shù)y=f(x)(x≥0)的值域.

【答案】(1)4 ; (2)見解析.

【解析】

(1)將點,2)代入函數(shù)解析式,即可得到a值;(2)按指數(shù)函數(shù)的單調性分a>1和0<a<1兩種情況,分類討論,求得f(x)的值域.

(1)∵函數(shù)f(x)=ax-1(x≥0)的圖象經(jīng)過點(,2),∴=2,∴a=4.

(2)對于函數(shù)y=f(x)=ax-1,當a>1時,單調遞增,

∵x≥0,x-1≥-1,∴f(x)≥a-1=,故函數(shù)的值域為[,+∞).

對于函數(shù)y=f(x)=ax-1,當0<a<1時,單調遞減,

∵x≥0,x-1≥-1,∴f(x)≤a-1=,又f(x)>0,故函數(shù)的值域為

綜上:當a>1時,值域為[,+∞).當0<a<1時,值域為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),則f(f(-1))=______;不等式f(x)≥1的解集為______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了了解某地高一學生的體能狀況,某校抽取部分學生進行一分鐘跳繩次數(shù)測試,將所得數(shù)據(jù)整理后,畫出頻率分布直方圖(如圖),圖中從左到右各小長方形的面積之比為2:4:17:15:9:3,第二小組頻數(shù)為12.

(1)第二小組的頻率是多少?樣本容量是多少?

(2)若次數(shù)在110以上為達標,試估計全體高一學生的達標率為多少?

(3)通過該統(tǒng)計圖,可以估計該地學生跳繩次數(shù)的眾數(shù)是______,中位數(shù)是_______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=mx2+(1-3m)x-4,m∈R.

(1)當m=1時,求f(x)在區(qū)間[-2,2]上的最大值和最小值.

(2)解關于x的不等式f(x)>-1.

(3)當m<0時,若存在x0∈(1,+∞),使得f(x)>0,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了展示中華漢字的無窮魅力,傳遞傳統(tǒng)文化,提高學習熱情,某校開展《中國漢字聽寫大會》的活動.為響應學校號召,2(9)班組建了興趣班,根據(jù)甲、乙兩人近期8次成績畫出莖葉圖,如圖所示,甲的成績中有一個數(shù)的個位數(shù)字模糊,在莖葉圖中用表示.(把頻率當作概率).

(1)假設,現(xiàn)要從甲、乙兩人中選派一人參加比賽,從統(tǒng)計學的角度,你認為派哪位學生參加比較合適?

(2)假設數(shù)字的取值是隨機的,求乙的平均分高于甲的平均分的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列四個命題中真命題的個數(shù)是(
①“x=1”是“x2﹣3x+2=0”的充分不必要條件
②命題“x∈R,sinx≤1”的否定是“x∈R,sinx>1”
③“若am2<bm2 , 則a<b”的逆命題為真命題
④命題p;x∈[1,+∞),lgx≥0,命題q:x∈R,x2+x+1<0,則p∨q為真命題.
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】有下列四個命題:

①已知-1<ab<0,則0.3aa2ab;

②若正實數(shù)a、b滿足a+b=1,則ab有最大值

③若正實數(shù)a、b滿足a+b=1,則有最大值;

xy∈(0,+∞),x3+y3x2y+xy2

其中真命題的個數(shù)是( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C的焦點坐標是F1(﹣1,0)、F2(1,0),過點F2垂直于長軸的直線l交橢圓C于B、D兩點,且|BD|=3.
(1)求橢圓C的方程;
(2)過定點P(0,2)且斜率為k的直線l與橢圓C相交于不同兩點M,N,試判斷:在x軸上是否存在點A(m,0),使得以AM,AN為鄰邊的平行四邊形為菱形?若存在,求出實數(shù)m的取值范圍,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知公比小于1的等比數(shù)列{an}的前n項和為Sn , a1= 且13a2=3S3(n∈N*).
(1)求數(shù)列{an}的通項公式;
(2)設bn=nan , 求數(shù)列{bn}的前項n和Tn

查看答案和解析>>

同步練習冊答案