選修4一1:幾何證明選講
如圖,⊙O的直徑AB的延長線與弦CD的延長線相交于點P.E為⊙O上一點,,DE交AB于點F.
(I)證明:DF•EF=OF•FP;
(II)當(dāng)AB=2BP時,證明:OF=BF.

【答案】分析:(I)利用弧長相等,轉(zhuǎn)化為角相等,通過三角形相似證明:DF•EF=OF•FP;
(II)設(shè)BP=a,ly AB=2BP,通過相交弦定理以及數(shù)量關(guān)系的轉(zhuǎn)化證明:OF=BF.
解答:.(I)證明:因為,∴∠AOE=∠CDE,∴∠EOF=∠PDF,
又∠EFO=∠PFD,
∴△OFE∽△PFD,∴,
∴DF•EF=OF•FP;
(II)設(shè)BP=a,由AB=2BP,得AO=BO=BP=a,
由相交弦定理得:DF•EF=AF•BF,
∴AF•BF=OF•FP,
∴OF•(a+BF)=(a+OF)•BF,∴OF=BF.
點評:本題考查直線與圓的關(guān)系,三角形相似以及相交弦定理的應(yīng)用,考查計算能力與轉(zhuǎn)化思想的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•太原一模)選修4一1:幾何證明選講
如圖,⊙O的直徑AB的延長線與弦CD的延長線相交于點P.E為⊙O上一點,
AC
=
AE
,DE交AB于點F.
(I)證明:DF•EF=OF•FP;
(II)當(dāng)AB=2BP時,證明:OF=BF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選修4一1:幾何證明選講
如圖,C是以AB為直徑的半圓O上的一點,過C的直線交直線AB于E,交過A點的切線于D,BC∥OD.
(Ⅰ)求證:DE是圓O的切線;
(Ⅱ)如果AD=AB=2,求EB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

選修4一1:幾何證明選講
如圖,C是以AB為直徑的半圓O上的一點,過C的直線交直線AB于E,交過A點的切線于D,BCOD.
(Ⅰ)求證:DE是圓O的切線;
(Ⅱ)如果AD=AB=2,求EB.
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年遼寧省沈陽二中高考數(shù)學(xué)六模試卷(理科)(解析版) 題型:解答題

選修4一1:幾何證明選講
如圖,C是以AB為直徑的半圓O上的一點,過C的直線交直線AB于E,交過A點的切線于D,BC∥OD.
(Ⅰ)求證:DE是圓O的切線;
(Ⅱ)如果AD=AB=2,求EB.

查看答案和解析>>

同步練習(xí)冊答案