【題目】已知橢圓的左焦點(diǎn)為F,點(diǎn),過(guò)M的直線與橢圓E交于A,B兩點(diǎn),線段AB中點(diǎn)為C,設(shè)橢圓E在A,B兩點(diǎn)處的切線相交于點(diǎn)P,O為坐標(biāo)原點(diǎn).
(1)證明:O、C、P三點(diǎn)共線;
(2)已知是拋物線的弦,所在直線過(guò)該拋物線的準(zhǔn)線與y軸的交點(diǎn),是弦在兩端點(diǎn)處的切線的交點(diǎn),小明同學(xué)猜想:在定直線上.你認(rèn)為小明猜想合理嗎?若合理,請(qǐng)寫(xiě)出所在直線方程;若不合理,請(qǐng)說(shuō)明理由.
【答案】(1)證明見(jiàn)解析; (2)合理,在直線上
【解析】
(1)設(shè)出直線的方程,聯(lián)立橢圓方程,根據(jù)韋達(dá)定理,利用導(dǎo)數(shù)求得任一點(diǎn)處切線的斜率,從而解得切線方程,得到點(diǎn)的坐標(biāo),由即可容易判斷;
(2)聯(lián)立的方程和拋物線方程,利用導(dǎo)數(shù)求得處的切線方程,結(jié)合已知條件,即可容易證明.
(1)設(shè),,直線AB的方程為.聯(lián)立
,消去x整理得,
由﹐得或
,
由橢圓對(duì)稱性,設(shè)是橢圓在x軸上方的任意一點(diǎn),
則由,得﹐
所以在處的切線斜率為,
故在處切線方程為,
結(jié)合化簡(jiǎn)得
切線PA方程為:,同理,
聯(lián)立兩切線方程消去y得,
聯(lián)立解得,
由AB中點(diǎn)及可得
,、C、P三點(diǎn)共線.
(2)合理,在直線上.
證明如下:設(shè),,
直線斜率一定存在,
聯(lián)立消去y得,
,
由得,.
拋物線在處的切線方程為,
同理在處的切線方程為
聯(lián)立解得,
故在直線上.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知曲線的參數(shù)方程為:(為參數(shù)),的參數(shù)方程為:(為參數(shù)).
(1)化、的參數(shù)方程為普通方程,并說(shuō)明它們分別表示什么曲線;
(2)若直線的極坐標(biāo)方程為:,曲線上的點(diǎn)對(duì)應(yīng)的參數(shù),曲線上的點(diǎn)對(duì)應(yīng)的參數(shù),求的中點(diǎn)到直線的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(Ⅰ)求直線的普通方程和曲線的直角坐標(biāo)方程;
(Ⅱ)設(shè)為曲線上的點(diǎn),,垂足為,若的最小值為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在,上單調(diào)遞增,求實(shí)數(shù)的取值范圍;
(2)若函數(shù)在處的切線平行于軸,是否存在整數(shù),使不等式在時(shí)恒成立?若存在,求出的最大值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(1)討論的單調(diào)性;
(2)設(shè),若在上恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線和軸上的定點(diǎn),過(guò)拋物線焦點(diǎn)作一條直線交于、兩點(diǎn),連接并延長(zhǎng),交于、兩點(diǎn).
(1)求證:直線過(guò)定點(diǎn);
(2)求直線與直線最大夾角為,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=|3x+2|.
(1)解不等式f(x)<4-|x-1|;
(2)已知m+n=1(m,n>0),若|x-a|-f(x)≤(a>0)恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PA⊥平面ABCD,底面ABCD是菱形,點(diǎn)O是對(duì)角線AC與BD的交點(diǎn),AB=2,∠BAD=60°,M是PD的中點(diǎn).
(Ⅰ)求證:OM∥平面PAB;
(Ⅱ)平面PBD⊥平面PAC;
(Ⅲ)當(dāng)三棱錐C﹣PBD的體積等于 時(shí),求PA的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,垂直于所在的平面,為的直徑,是弧上的一個(gè)動(dòng)點(diǎn)(不與端點(diǎn)重合),為上一點(diǎn),且是線段上的一個(gè)動(dòng)點(diǎn)(不與端點(diǎn)重合).
(1)求證:平面;
(2)若是弧的中點(diǎn),是銳角,且三棱錐的體積為,求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com