【題目】某公司有1000名員工,其中男性員工400名,采用分層抽樣的方法隨機(jī)抽取100名員工進(jìn)行5G手機(jī)購買意向的調(diào)查,將計(jì)劃在今年購買5G手機(jī)的員工稱為追光族",計(jì)劃在明年及明年以后才購買5G手機(jī)的員工稱為觀望者,調(diào)查結(jié)果發(fā)現(xiàn)抽取的這100名員工中屬于追光族的女性員工和男性員工各有20.

1)完成下列列聯(lián)表,并判斷是否有95%的把握認(rèn)為該公司員工屬于追光族"性別"有關(guān);

屬于追光族"

屬于觀望者"

合計(jì)

女性員工

男性員工

合計(jì)

100

2)已知被抽取的這100名員工中有10名是人事部的員工,這10名中有3名屬于追光族”.現(xiàn)從這10名中隨機(jī)抽取3名,記被抽取的3名中屬于追光族的人數(shù)為隨機(jī)變量X,求的分布列及數(shù)學(xué)期望.

,其中

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

【答案】1)表見解析,沒有95%的把握認(rèn)為該公司員工屬于追光族"性別"有關(guān);(2)分布列見解析,

【解析】

1)根據(jù)題意,列出列聯(lián)表,計(jì)算K2,查表判斷即可;

2)隨機(jī)變量X的所有可能取值為01,2,3,分布求出對應(yīng)概率,列出分布列,求期望即可.

1由題意得,2×2列聯(lián)表如下:

屬于追光族"

屬于觀望者"

合計(jì)

女性員工

20

40

60

男性員工

20

20

40

合計(jì)

40

60

100

,故沒有95%的把握認(rèn)為該公司員工屬于追光族"性別"有關(guān);

2由題意得,隨機(jī)變量X的所有可能的取值為01,23,

;

;

.

所以的分布列為

X

0

1

2

3

P

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知各項(xiàng)都是正數(shù)的數(shù)列的前項(xiàng)和為,且,數(shù)列滿足,.

(1)求數(shù)列、的通項(xiàng)公式;

(2)設(shè)數(shù)列滿足,求和;

(3)是否存在正整數(shù),,,使得,成等差數(shù)列?若存在,求出所有滿足要求的,,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,射線均為筆直的公路,扇形區(qū)域(含邊界)是一蔬菜種植園,其中、分別在射線上.經(jīng)測量得,扇形的圓心角(即)為、半徑為1千米.為了方便菜農(nóng)經(jīng)營,打算在扇形區(qū)域外修建一條公路,分別與射線、交于、兩點(diǎn),并要求與扇形弧相切于點(diǎn).設(shè)(單位:弧度),假設(shè)所有公路的寬度均忽略不計(jì).

(1)試將公路的長度表示為的函數(shù),并寫出的取值范圍;

(2)試確定的值,使得公路的長度最小,并求出其最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為的正方形中,線段BC的端點(diǎn)分別在邊、上滑動,且,現(xiàn)將,分別沿AB,AC折起使點(diǎn)重合,重合后記為點(diǎn),得到三被錐.現(xiàn)有以下結(jié)論:

平面

②當(dāng)分別為、的中點(diǎn)時,三棱錐的外接球的表面積為

的取值范圍為;

④三棱錐體積的最大值為.

則正確的結(jié)論的個數(shù)為( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知是曲線上的動點(diǎn),將繞點(diǎn)順時針旋轉(zhuǎn)得到,設(shè)點(diǎn)的軌跡為曲線.以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.

1)求曲線,的極坐標(biāo)方程;

2)在極坐標(biāo)系中,點(diǎn),射線與曲線,分別相交于異于極點(diǎn)兩點(diǎn),求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱錐中,底面四邊形為平行四邊形,的中點(diǎn),上一點(diǎn),且(如圖).

1)證明:平面;

2)當(dāng)平面平面,時,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

1)當(dāng)時,求曲線在點(diǎn)處的切線方程;

2)當(dāng)時,求證:函數(shù)恰有兩個零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定圓,其圓心為,點(diǎn)為圓所在平面內(nèi)一定點(diǎn),點(diǎn)為圓上一個動點(diǎn),若線段的中垂線與直線交于點(diǎn),則動點(diǎn)的軌跡可能為______.(寫出所有正確的序號)(1)橢圓;(2)雙曲線;(3)拋物線;(4)圓;(5)直線;(6)一個點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線,直線.

(1)若直線與拋物線相切,求直線的方程;

(2)設(shè),直線與拋物線交于不同的兩點(diǎn),若存在點(diǎn),滿足,且線段互相平分(為原點(diǎn)),求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案