【題目】已知函數(shù).

1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;

2)當(dāng)時(shí),求證:函數(shù)恰有兩個(gè)零點(diǎn).

【答案】(1)(2)證明見(jiàn)解析

【解析】

1)求函數(shù)導(dǎo)數(shù),即可得結(jié)論;

2)先求出,結(jié)合定義域轉(zhuǎn)化為證明有兩個(gè)零點(diǎn),利用導(dǎo)數(shù)求出單調(diào)區(qū)間,按零點(diǎn)存在性定理證明,即可得出結(jié)論.

解:(1)當(dāng)時(shí),,

,故,

故所求切線的方程為:,即.

2,

因?yàn)?/span>,所以只需證明在已知條件下,

恰有兩個(gè)零點(diǎn)即可.

,

當(dāng)時(shí),;當(dāng)時(shí),.

所以在區(qū)間內(nèi)單調(diào)遞增,在區(qū)間內(nèi)單調(diào)遞減,

因?yàn)?/span>,故,所以,

,則

所以單調(diào)遞增,

時(shí),,

,,所以,即,

,

,,且在區(qū)間內(nèi)單調(diào)遞增,可得,

存在唯一,即,使得,

在區(qū)間內(nèi)單調(diào)遞減,,,

恰有兩個(gè)零點(diǎn),

所以,時(shí),函數(shù)恰有兩個(gè)零點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

討論函數(shù)的單調(diào)性;

設(shè),對(duì)任意的恒成立,求整數(shù)的最大值;

求證:當(dāng)時(shí),

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),若存在,使得關(guān)于的不等式恒成立,則的取值范圍為

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司有1000名員工,其中男性員工400名,采用分層抽樣的方法隨機(jī)抽取100名員工進(jìn)行5G手機(jī)購(gòu)買(mǎi)意向的調(diào)查,將計(jì)劃在今年購(gòu)買(mǎi)5G手機(jī)的員工稱為追光族",計(jì)劃在明年及明年以后才購(gòu)買(mǎi)5G手機(jī)的員工稱為觀望者,調(diào)查結(jié)果發(fā)現(xiàn)抽取的這100名員工中屬于追光族的女性員工和男性員工各有20.

1)完成下列列聯(lián)表,并判斷是否有95%的把握認(rèn)為該公司員工屬于追光族"性別"有關(guān);

屬于追光族"

屬于觀望者"

合計(jì)

女性員工

男性員工

合計(jì)

100

2)已知被抽取的這100名員工中有10名是人事部的員工,這10名中有3名屬于追光族”.現(xiàn)從這10名中隨機(jī)抽取3名,記被抽取的3名中屬于追光族的人數(shù)為隨機(jī)變量X,求的分布列及數(shù)學(xué)期望.

,其中

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,直線經(jīng)過(guò)點(diǎn),其傾斜角為,以原點(diǎn)為極點(diǎn),以軸非負(fù)半軸為極軸,與直角坐標(biāo)系取相同的長(zhǎng)度單位,建立極坐標(biāo)系,設(shè)曲線的參數(shù)方程為為參數(shù)),曲線的極坐標(biāo)方程為.

1)求曲線的普通方程和極坐標(biāo)方程;

2)若直線與曲線有公共點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市教育部門(mén)為了了解全市高一學(xué)生的身高發(fā)育情況,從本市全體高一學(xué)生中隨機(jī)抽取了100人的身高數(shù)據(jù)進(jìn)行統(tǒng)計(jì)分析。經(jīng)數(shù)據(jù)處理后,得到了如下圖1所示的頻事分布直方圖,并發(fā)現(xiàn)這100名學(xué)生中,身不低于1.69米的學(xué)生只有16名,其身高莖葉圖如下圖2所示,用樣本的身高頻率估計(jì)該市高一學(xué)生的身高概率.

(I)求該市高一學(xué)生身高高于1.70米的概率,并求圖1中的值.

(II)若從該市高一學(xué)生中隨機(jī)選取3名學(xué)生,記為身高在的學(xué)生人數(shù),求的分布列和數(shù)學(xué)期望;

(Ⅲ)若變量滿足,則稱變量滿足近似于正態(tài)分布的概率分布.如果該市高一學(xué)生的身高滿足近似于正態(tài)分布的概率分布,則認(rèn)為該市高一學(xué)生的身高發(fā)育總體是正常的.試判斷該市高一學(xué)生的身高發(fā)育總體是否正常,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】唐代詩(shī)人李頎的詩(shī)《古從軍行》開(kāi)頭兩句說(shuō):“白日登山望烽火,黃昏飲馬傍交河.”詩(shī)中隱含著一個(gè)有趣的數(shù)學(xué)問(wèn)題一“將軍飲馬”問(wèn)題,即將軍在觀望烽火之后從山腳下某處出發(fā),先到河邊飲馬后再回軍營(yíng),怎樣走才能使總路程最短?在平面直角坐標(biāo)系中,設(shè)軍營(yíng)所在區(qū)域?yàn)?/span>,若將軍從點(diǎn)處出發(fā),河岸線所在直線方程為,并假定將軍只要到達(dá)軍營(yíng)所在區(qū)域即回到軍營(yíng),則“將軍飲馬”的最短總路程為( ).

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法錯(cuò)誤的是(

A.命題,則的逆否命題為,則

B.命題,是假命題

C.若命題、均為假命題,則命題為真命題

D.是定義在R上的函數(shù),則是奇函數(shù)的必要不允分條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 的離心率為,且過(guò)點(diǎn)是橢圓的左、右頂點(diǎn),直線過(guò)點(diǎn)且與軸垂直.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)設(shè)是橢圓上異于的任意一點(diǎn),作軸于點(diǎn),延長(zhǎng)到點(diǎn)使得,連接并延長(zhǎng)交直線點(diǎn),點(diǎn)為線段的中點(diǎn),判斷直線與以為直徑的圓的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案