已知數(shù)列{an}和{bn}都是等差數(shù)列,它們的前n項(xiàng)和分別記為Sn和Tn,且
Sn
T
 
n
=
2n+3
3n-4
,則
a10
b10
=
41
53
41
53
分析:直接利用等差數(shù)列前n項(xiàng)和的知識(shí),S2n-1=(2n-1)•an,求出
a10
b10
的值.
解答:解:因?yàn)榈炔顢?shù)列前n項(xiàng)和中,S2n-1=(2n-1)•an,
所以a10=
S19
19
,b10=
T19
19

a10
b10
=
S19
T19
=
2×19+3
3×19-4
=
41
53

故答案為:
41
53
點(diǎn)評(píng):在等差數(shù)列中,S2n-1=(2n-1)•an,即中間項(xiàng)的值,等于所有項(xiàng)值的平均數(shù),這是等差數(shù)列常用性質(zhì)之一,希望大家牢固掌握.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}和{bn}滿(mǎn)足:a=1,a1=2,a2>0,bn=
a1an+1
(n∈N*)
.且{bn}是以
a為公比的等比數(shù)列.
(Ⅰ)證明:aa+2=a1a2;
(Ⅱ)若a3n-1+2a2,證明數(shù)例{cx}是等比數(shù)例;
(Ⅲ)求和:
1
a1
+
1
a2
+
1
a3
+
1
a4
+
+
1
a2n-1
+
1
a2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}和{bn}滿(mǎn)足a1=m,an+1an+n,bn=an-
2n
3
+
4
9

(1)當(dāng)m=1時(shí),求證:對(duì)于任意的實(shí)數(shù)λ,{an}一定不是等差數(shù)列;
(2)當(dāng)λ=-
1
2
時(shí),試判斷{bn}是否為等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}和等比數(shù)列{bn}滿(mǎn)足:a1=b1=4,a2=b2=2,a3=1,且數(shù)列{an+1-an}是等差數(shù)列,n∈N*,
(Ⅰ)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(Ⅱ)問(wèn)是否存在k∈N*,使得ak-bk∈(
12
,3]
?若存在,求出k的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}和{bn}滿(mǎn)足:a1=λ,an+1=
23
an+n-4,bn=(-1)n(an-3n+21)其中λ為實(shí)數(shù),且λ≠-18,n為正整數(shù).
(Ⅰ)求證:{bn}是等比數(shù)列;
(Ⅱ)設(shè)0<a<b,Sn為數(shù)列{bn}的前n項(xiàng)和.是否存在實(shí)數(shù)λ,使得對(duì)任意正整數(shù)n,都有a<Sn<b?若存在,求λ的取值范圍;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•孝感模擬)已知數(shù)列{an}和{bn}滿(mǎn)足a1=1且bn=1-2an,bn+1=
bn
1-4 
a
2
n

(I)證明:數(shù)列{
1
an
}是等差數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)求使不等式(1+a1)(1+a2)…(1+an)≥k
1
b2b3bnbn+1 
對(duì)任意正整數(shù)n都成立的最大實(shí)數(shù)k.

查看答案和解析>>

同步練習(xí)冊(cè)答案