【題目】已知函數(shù)f(x)=2cos(ωx﹣φ)(ω>0,φ∈[0,π])的部分圖象如圖所示,若A( , ),B( , ).則下列說法錯誤的是(

A.φ=
B.函數(shù)f(x)的一條對稱軸為x=
C.為了得到函數(shù)y=f(x)的圖象,只需將函數(shù)y=2sin2x的圖象向右平移 個單位
D.函數(shù)f(x)的一個單調(diào)減區(qū)間為[ ]

【答案】D
【解析】解:對于A:由函數(shù)圖形T=丨 丨=π,
,
∴ω=2,
將A點( , )代入f(x)=2cos(2x﹣φ),
=2cos(π﹣φ),
cosφ=﹣ ,φ∈[0,π]),
φ= ,
故A正確;
f(x)=2cos(2x﹣ ),
對于:B,由f(x)=2cos(2x﹣ ),
將x= ,求得2 =3π,
故B正確;
C選項,將y=2sin2x向右平移 個單位,
得y=2sin(2x﹣
=cos(2x﹣
=2cos(2x﹣ )=f(x)
故C正確;
對于D,f(x)=2cos(2x﹣ ),2x﹣ ∈[2kπ,2kπ+π]k∈Z,
x∈[kπ+ ,kπ+ ]k∈Z,
∴選項D錯誤,
故答案選:D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x﹣ ﹣1,g(x)=x+2x , h(x)=x+lnx,零點分別為x1 , x2 , x3 , 則(
A.x1<x2<x3
B.x2<x1<x3
C.x3<x1<x2
D.x2<x3<x1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,且滿足2acosC=2b﹣c.
(1)求sinA的值;
(2)若a=1,求△ABC的周長l的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=e2x1(x2+ax﹣2a2+1).(a∈R)
(1)若a=1,求函數(shù)f(x)在(1,f(1))處的切線方程;
(2)討論函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直線上取一點,作以為焦點的橢圓,則當(dāng)最小時,橢圓的標(biāo)準(zhǔn)方程為____________________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中,側(cè)棱垂直于底面, 分別是的中點.

1)求證: 平面平面

2)求證: 平面;

3)求三棱錐體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC中,角A,B,C的對邊分別為a,b,c,cos A=,sin B=cos C.

(1)tan C的值;

(2)a=,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=xex , g(x)=﹣(x+1)2+a,若x1 , x2∈[﹣2,0],使得f(x2)≤g(x1)成立,則實數(shù)a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在三棱錐S-ABC中,△ABC是邊長為6的正三角形,SA=SB=SC=15,平面DEFH分別與AB,BC,SC,SA交于點D,E,F(xiàn),H.且D,E分別是AB,BC的中點,如果直線SB∥平面DEFH,那么四邊形DEFH的面積為________

查看答案和解析>>

同步練習(xí)冊答案