已知P是直角三角形ABC所在平面外一點(diǎn),O是斜邊AB的中點(diǎn),且PA=PB=PC。
求證:PO⊥平面ABC。

證明:連接OC,如圖所示,

∵AB是Rt△ABC的斜邊,O是AB的中點(diǎn),
∴OA=OB=OC,
∵PA=PB=PC,
∴△POA≌△POB≌△POC,
∴∠POA=∠POB=∠POC,
∵∠POA+∠POB=180°,
∴∠POA=∠POB=90°,
∴∠POC=90°,即PO⊥OA ,PO⊥OC,
∵OA∩OC=O,
∴PO⊥平面ABC。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線S的兩個(gè)焦點(diǎn)F1、F2在x軸上,它的兩條漸近線分別為l1、l2,y=
3
3
x是其中的一條漸近線的方程,兩條直線X=±
3
2
是雙曲線S的準(zhǔn)線.
(I)設(shè)A、B分別為l1、l2上的動(dòng)點(diǎn),且2|
AB
|=5
F1F2
,求線段AB的中點(diǎn)M的軌跡方程:
(II)已知O是原點(diǎn),經(jīng)過點(diǎn)N(0,1)是否存在直線l,使l與雙曲線S交于P,E且△POE是以PE為斜邊的直角三角形?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列結(jié)論:
①已知命題p:?x∈R,tanx=1;命題q:?x∈R,x2-x+1>0.則命題“p∧?q”是假命題;
②函數(shù)y=
|x|
x2+1
的最小值為
1
2
且它的圖象關(guān)于y軸對稱;
③“a>b”是“2a>2b”的充分不必要條件;
④在△ABC中,若sinAcosB=sinC,則△ABC中是直角三角形.
⑤若tanθ=2,則sin2θ=
4
5
;
其中正確命題的序號(hào)為
①④⑤
①④⑤
.(把你認(rèn)為正確的命題序號(hào)填在橫線處)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下面給出五個(gè)命題:
①已知平面α∥平面β,AB,CD是夾在α,β間的線段,若AB∥CD,則AB=CD;
②a,b是異面直線,b,c是異面直線,則a,c一定是異面直線;
③三棱錐的四個(gè)面可以都是直角三角形.
④平面α∥平面β,P∈α,PQ∥β,則PQ⊆α;
⑤三棱錐中若有兩組對棱互相垂直,則第三組對棱也一定互相垂直;
其中正確的命題編號(hào)是
①③④⑤
①③④⑤
(寫出所有正確命題的編號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)B(1,0),P是函數(shù)y=ex圖象上不同于A(0,1)的一點(diǎn).有如下結(jié)論:
①存在點(diǎn)P使得△ABP是等腰三角形;
②存在點(diǎn)P使得△ABP是銳角三角形;
③存在點(diǎn)P使得△ABP是直角三角形.
其中,正確的結(jié)論的個(gè)數(shù)為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江西省贛州市十二縣(市)高二(下)期中數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

已知P為橢圓(a>b>0)上一點(diǎn),F(xiàn)1,F(xiàn)2是橢圓的左、右焦點(diǎn),若使△PF1F2為直角三角形的點(diǎn)P有且只有4個(gè),則橢圓離心率的取值范圍是( )
A.(0,
B.(,1)
C.(1,
D.(,+∞)

查看答案和解析>>

同步練習(xí)冊答案