【題目】已知函數(shù)

1)若存在極值點(diǎn)1,求的值;

2)若存在兩個(gè)不同的零點(diǎn),求證:

【答案】(1) (2) 見解析.

【解析】

試題(1)由存在極值點(diǎn)為1,得,可解得a.

(2)是典型的極值點(diǎn)偏移問題,先證明,再利用上的單調(diào)性,即可得證.

試題解析:(1) ,因?yàn)?/span>存在極值點(diǎn)為1,所以,即,經(jīng)檢驗(yàn)符合題意,所以.

(2)

當(dāng)時(shí),恒成立,所以上為增函數(shù),不符合題意;

當(dāng)時(shí),由,

當(dāng)時(shí),,所以為增函數(shù),

當(dāng)時(shí),,所為減函數(shù),

所以當(dāng)時(shí),取得極小值

又因?yàn)?/span>存在兩個(gè)不同零點(diǎn),所以,即

整理得,

關(guān)于直線的對(duì)稱曲線,

所以上單調(diào)遞增,

不妨設(shè),則,

,

又因?yàn)?/span>上為減函數(shù),

,即,又,易知成立,

.

點(diǎn)晴:本題主要考查導(dǎo)數(shù)在函數(shù)中的應(yīng)用,具體涉及到函數(shù)的極值,函數(shù)的極值點(diǎn)偏移問題.第一問中存在極值點(diǎn)1,所以,解得;第二問處理極值點(diǎn)問題有兩個(gè)關(guān)鍵步驟:一是在構(gòu)造函數(shù)證明其大于于0恒成立,二是利用上為減函數(shù) ,兩者結(jié)合即可證明結(jié)論成立.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=loga(x+1)-loga(1-x),a>0a≠1.

(1)f(x)的定義域;

(2)判斷f(x)的奇偶性并予以證明;

(3)當(dāng)a>1時(shí),求使f(x)>0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知國家某級(jí)大型景區(qū)對(duì)擁擠等級(jí)與每日游客數(shù)量(單位:百人)的關(guān)系有如下規(guī)定:當(dāng)時(shí),擁擠等級(jí)為優(yōu);當(dāng)時(shí),擁擠等級(jí)為;當(dāng)時(shí),擁擠等級(jí)為擁擠;當(dāng)時(shí),擁擠等級(jí)為嚴(yán)重?fù)頂D.該景區(qū)對(duì)6月份的游客數(shù)量作出如圖的統(tǒng)計(jì)數(shù)據(jù):

(1)下面是根據(jù)統(tǒng)計(jì)數(shù)據(jù)得到的頻率分布表,求出的值,并估計(jì)該景區(qū)6月份游客人數(shù)的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);

游客數(shù)量(單位:百人)

天數(shù)

10

4

1

頻率

2)某人選擇在61日至65日這5天中任選2天到該景區(qū)游玩,求他這2天遇到的游客擁擠等級(jí)均為優(yōu)的頻率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐的底面是邊長為2的菱形,底面.

1)求證:平面;

2)若,直線與平面所成的角為,求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知極坐標(biāo)系的極點(diǎn)為直角坐標(biāo)系的原點(diǎn),極軸為軸的正半軸,兩種坐標(biāo)系中的長度單位相同,圓的直角坐標(biāo)方程為,直線的參數(shù)方程為為參數(shù)),射線的極坐標(biāo)方程為

1)求圓和直線的極坐標(biāo)方程;

(2)已知射線與圓的交點(diǎn)為,與直線的交點(diǎn)為,求線段的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,離心率為,橢圓上的點(diǎn)到焦點(diǎn)距離的最大值為

)求橢圓的標(biāo)準(zhǔn)方程;

)若過點(diǎn)的直線與橢圓交于不同的兩點(diǎn),且,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前項(xiàng)和為,,,數(shù)列中,,滿足.

1 求出,的通項(xiàng)公式;

2)設(shè),數(shù)列的前項(xiàng)和為,求使得時(shí),對(duì)所有的恒成立的最大正整數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C:過點(diǎn),左右焦點(diǎn)為,且橢圓C關(guān)于直線對(duì)稱的圖形過坐標(biāo)原點(diǎn)。

(I)求橢圓C方程;

(II)圓D:與橢圓C交于A,B兩點(diǎn),R為線段AB上任一點(diǎn),直線F1R交橢圓C于P,Q兩點(diǎn),若AB為圓D的直徑,且直線F1R的斜率大于1,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓 經(jīng)過橢圓 的左右焦點(diǎn),且與橢圓在第一象限的交點(diǎn)為,且三點(diǎn)共線,直線交橢圓 兩點(diǎn),且).

(1)求橢圓的方程;

(2)當(dāng)三角形的面積取得最大值時(shí),求直線的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案