【題目】函數(shù)f (x)=(-6≤x≤10)的所有零點之和為____________.
【答案】16
【解析】
構(gòu)造函數(shù)g(x)=()|x﹣2|,h(x)=﹣2cos,由于﹣6≤x≤10時,函數(shù)g(x),h(x)的圖象都關(guān)于直線x=2對稱,可得函數(shù)f(x)在﹣6≤x≤10的圖象關(guān)于直線x=2對稱.運用﹣6≤x≤10時,函數(shù)g(x),h(x)的圖象的交點共有8個,即可得到f(x)的所有零點之和.
構(gòu)造函數(shù)g(x)=()|x﹣2|,
h(x)=﹣2cos,
∵﹣6≤x≤10時,
函數(shù)g(x),h(x)的圖象
都關(guān)于直線x=2對稱,
∴函數(shù)f(x)=()|x﹣2|+2cos
(﹣6≤x≤10)
的圖象關(guān)于直線x=2對稱.
∵﹣6≤x≤10時,函數(shù)g(x),h(x)的圖象的交點共有8個,
∴函數(shù)f(x)的所有零點之和等于4×4=16.
故答案為:16.
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
以平面直角坐標系的原點為極點, 軸的正半軸為極軸建立極坐標系,已知點的直角坐標為,若直線的極坐標方程為,曲線的參數(shù)方程是,(為參數(shù)).
(1)求直線的直角坐標方程和曲線的普通方程;
(2)設直線與曲線交于兩點,求.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)的定義域為,且對任意的有. 當時,,.
(1)求并證明的奇偶性;
(2)判斷的單調(diào)性并證明;
(3)求;若對任意恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,圓的參數(shù)方程為 (為參數(shù)),圓與圓外切于原點,且兩圓圓心的距離,以坐標原點為極點, 軸正半軸為極軸建立極坐標系.
(1)求圓和圓的極坐標方程;
(2)過點的直線與圓異于點的交點分別為點,與圓異于點的交點分別為點,且,求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,A,B是半徑為2的圓周上的定點,P為圓周上的動點,是銳角,大小為β.圖中陰影區(qū)域的面積的最大值為
A. 4β+4cosβB. 4β+4sinβC. 2β+2cosβD. 2β+2sinβ
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD為正方形,PD⊥平面ABCD,PD∥QA,QA=AB=PD.
(I)證明:平面PQC⊥平面DCQ
(II)求二面角Q-BP-C的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】天津大學某學院欲安排4名畢業(yè)生到某外資企業(yè)的三個部門實習,要求每個部門至少安排1人,其中甲大學生不能安排到部門工作的方法有_______種(用數(shù)字作答).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)是定義在上的奇函數(shù),當時,,其中.
(1)當時,__________;
(2)若的值域是,則的取值范圍為__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com