【題目】在坐標(biāo)平面上,縱橫坐標(biāo)都是整數(shù)的點(diǎn)稱為整點(diǎn).試證:存在一個(gè)同心圓的集合,使得:(1)每個(gè)整點(diǎn)都在此集體的某一圓周上;(2)此集合的每個(gè)圓周上.有且只有一個(gè)整點(diǎn).
【答案】見(jiàn)解析
【解析】
假設(shè)同心圓圓心為P(x,y)任兩點(diǎn)整點(diǎn)A(a,b)和B(c,d),其中a = c,b = d不同時(shí)成立.
.
,
.
∵,a = c,b = d不同時(shí)成立,
∴要使,只需取x為任意無(wú)理數(shù),y取任意分母不為2的非整有理數(shù)即可(或x,y各取形如的最簡(jiǎn)非同類根式的無(wú)理數(shù),其中).
如取(或),則任意兩個(gè)不同整點(diǎn)到的距離都不相等.
把所有整點(diǎn)到P點(diǎn)的距離從小到大排成一列,以為圓心,以為半徑作的同心圓集合即為所求.
(注:P點(diǎn)坐標(biāo)還可其他超越數(shù),如等等.)
證明三 設(shè)坐標(biāo)平面上任兩個(gè)不同整點(diǎn)A(a,b)和B(c,d),分三類情況討論.
(1),中點(diǎn),AB垂直平分線方程為;
(2),中點(diǎn),AB垂直平分線方程為;
(3),中點(diǎn),AB垂直平分線方程為.
顯然,只有在上述三類直線上的點(diǎn)才有可能到平面上某兩整點(diǎn)的距離相等.若取,則必然不在上述三類直線上,則到任意兩個(gè)不同整點(diǎn)的距離都不相等.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知的一個(gè)頂點(diǎn)為拋物線的頂點(diǎn), , 兩點(diǎn)都在拋物線上,且.
(1)求證:直線必過(guò)一定點(diǎn);
(2)求證: 面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】國(guó)內(nèi)某汽車品牌一個(gè)月內(nèi)被消費(fèi)者投訴的次數(shù)用表示,據(jù)統(tǒng)計(jì),隨機(jī)變量的概率分布如下:
0 | 1 | 2 | 3 | |
(1)求的值;
(2)若每個(gè)月被消費(fèi)者投訴的次數(shù)互不影響,求該汽車品牌在五個(gè)月內(nèi)被消費(fèi)者投訴3次的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線的焦點(diǎn)為,為軸上的點(diǎn).
(1)過(guò)點(diǎn)作直線與相切,求切線的方程;
(2)如果存在過(guò)點(diǎn)的直線與拋物線交于,兩點(diǎn),且直線與的傾斜角互補(bǔ),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】生活中萬(wàn)事萬(wàn)物都是有關(guān)聯(lián)的,所有直線中有關(guān)聯(lián)直線,所有點(diǎn)中也有相關(guān)點(diǎn),現(xiàn)在定義:平面內(nèi)如果兩點(diǎn)、都在函數(shù)的圖像上,而且滿足、兩點(diǎn)關(guān)于原點(diǎn)對(duì)稱,則稱點(diǎn)對(duì)(、)是函數(shù)的“相關(guān)對(duì)稱點(diǎn)對(duì)”(注明:點(diǎn)對(duì)(、)與(、)看成同一個(gè)“相關(guān)對(duì)稱點(diǎn)對(duì)”).已知函數(shù),則這個(gè)函數(shù)的“相關(guān)對(duì)稱點(diǎn)對(duì)”有( )
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為,直線的參數(shù)方程為(為參數(shù)),點(diǎn)的極坐標(biāo)為,設(shè)直線與曲線相交于兩點(diǎn).
(1)寫出曲線的直角坐標(biāo)方程和直線的普通方程;
(2)求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(為常數(shù)).
(1)討論函數(shù)的單調(diào)性;
(2)當(dāng)時(shí),設(shè)的兩個(gè)極值點(diǎn),()恰為的零點(diǎn),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(為常數(shù),,的部分圖象如圖所示,有下列結(jié)論:
①函數(shù)的最小正周期為
②函數(shù)在上的值域?yàn)?/span>
③函數(shù)的一條對(duì)稱軸是
④函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱
⑤函數(shù)在上為減函數(shù)
其中正確的是______.(填寫所有正確結(jié)論的編號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐中,,,D,E分別為BC,PD的中點(diǎn),F為AB上一點(diǎn),且.
(1)求證:平面PAD;
(2)求證:平面PAC;
(3)若二面角為60°,求三棱錐的體積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com