【題目】已知拋物線的焦點(diǎn)為軸上的點(diǎn).

(1)過(guò)點(diǎn)作直線相切,求切線的方程;

(2)如果存在過(guò)點(diǎn)的直線與拋物線交于,兩點(diǎn),且直線的傾斜角互補(bǔ),求實(shí)數(shù)的取值范圍.

【答案】(1) 切線的方程為;(2) .

【解析】試題分析:(1)設(shè)切點(diǎn)為,利用導(dǎo)數(shù)求出切線斜率,由點(diǎn)斜式求得切線方程,將代入切線方程,求出,進(jìn)而可得切線方程;(2)設(shè)直線的方程為,代入,根據(jù)斜率公式可得,韋達(dá)定理得,利用判別式大于零可得結(jié)果.

試題解析:(1)設(shè)切點(diǎn)為,則.

點(diǎn)處的切線方程為.

過(guò)點(diǎn),∴,解得.

當(dāng)時(shí),切線的方程為,

當(dāng)時(shí),切線的方程為.

(2)設(shè)直線的方程為,代入.

設(shè),則,.

由已知得,

,∴.

代入,③

當(dāng)時(shí),顯然成立,

當(dāng)時(shí),方程③有解,∴,解得,.

綜上,.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx)的定義域?yàn)?/span>R,當(dāng)x0時(shí)滿足:①fx)﹣2f(﹣x)=0;②對(duì)任意x10,x20x1x2有(x1x2)(fx1)﹣fx2))>0恒成立:③f4)=2f2)=2,則不等式x[fx)﹣1]0的解集為_____(用區(qū)間表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)若函數(shù)的圖象經(jīng)過(guò)P34)點(diǎn),求a的值;

2)比較大小,并寫出比較過(guò)程;

3)若,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知ABC的三個(gè)內(nèi)角ABC所對(duì)的邊分別是a,bc,向量(cos B,cos C)(2ac,b),且

(1)求角B的大;

(2)b,求ac的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知正三棱錐P-ABC的側(cè)面是直角三角形,PA=6,頂點(diǎn)P在平面ABC內(nèi)的正投影為點(diǎn)D,D在平面PAB內(nèi)的正投影為點(diǎn)E,連結(jié)PE并延長(zhǎng)交AB于點(diǎn)G.

)證明:GAB的中點(diǎn);

)在圖中作出點(diǎn)E在平面PAC內(nèi)的正投影F(說(shuō)明作法及理由),并求四面體PDEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】1766年;人類已經(jīng)發(fā)現(xiàn)的太陽(yáng)系中的行星有金星、地球、火星、木星和土星.德國(guó)的一位中學(xué)教師戴維一提丟斯在研究了各行星離太陽(yáng)的距離(單位:AU,AU是天文學(xué)中計(jì)量天體之間距離的一種單位)的排列規(guī)律后,預(yù)測(cè)在火星和木星之間應(yīng)該還有一顆未被發(fā)現(xiàn)的行星存在,并按離太陽(yáng)的距離從小到大列出了如下表所示的數(shù)據(jù):

行星編號(hào)(x

1(金星)

2(地球)

3(火星)

4

5(木星)

6(土星)

離太陽(yáng)的距離(y

0.7

1.0

1.6

5.2

10.0

受他的啟發(fā),意大利天文學(xué)家皮亞齊于1801年終于發(fā)現(xiàn)了位于火星和木星之間的谷神星.

1)為了描述行星離太陽(yáng)的距離y與行星編號(hào)之間的關(guān)系,根據(jù)表中已有的數(shù)據(jù)畫出散點(diǎn)圖,并根據(jù)散點(diǎn)圖的分布狀況,從以下三種模型中選出你認(rèn)為最符合實(shí)際的一種函數(shù)模型(直接給出結(jié)論即可);

;②;③.

2)根據(jù)你的選擇,依表中前幾組數(shù)據(jù)求出函數(shù)解析式,并用剩下的數(shù)據(jù)檢驗(yàn)?zāi)P偷奈呛锨闆r;

3)請(qǐng)用你求得的模型,計(jì)算谷神星離太陽(yáng)的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)當(dāng)時(shí),曲線總在曲線的下方,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為數(shù)列的前項(xiàng)和,已知,

(1)求

(2)記數(shù)列的前項(xiàng)和為,若對(duì)于任意的,恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知某運(yùn)動(dòng)員每次投籃命中的概率低于,現(xiàn)采用隨機(jī)模擬的方法估計(jì)該運(yùn)動(dòng)員三次投籃恰有兩次命中的概率:先由計(jì)算器產(chǎn)生0到9之間取整數(shù)值的隨機(jī)數(shù),指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三個(gè)隨機(jī)數(shù)為一組,代表三次投籃的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了如下20組隨機(jī)數(shù):

907 966 191 925 271 932 812 458 569 683

431 257 393 027 556 488 730 113 537 989

據(jù)此估計(jì),該運(yùn)動(dòng)員三次投籃恰有兩次命中的概率為( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案