【題目】設是定義在上的偶函數(shù), ,都有,且當時, ,若函數(shù)()在區(qū)間內恰有三個不同零點,則實數(shù)的取值范圍是( )
A. B.
C. D.
【答案】A
【解析】由可得函數(shù)的圖象關于對稱,即
又函數(shù)是偶函數(shù),則,
∴,即函數(shù)的周期是4.
當時, ,此時,
由得,令.
∵函數(shù)()在區(qū)間內恰有三個不同零點,
∴函數(shù)和的圖象在區(qū)間內有三個不同的公共點.
作出函數(shù)的圖象如圖所示.
①當時,函數(shù)為增函數(shù),
結合圖象可得,要使兩函數(shù)的圖象有三個公共點,則需滿足在點A處的函數(shù)值小于2,在點B處的函數(shù)值大于2,
即,解得;
②當時,函數(shù)為減函數(shù),
結合圖象可得,要使兩函數(shù)的圖象有三個公共點,則需滿足在點C處的函數(shù)值小于,在點B處的函數(shù)值大于,
即,解得.
綜上可得實數(shù)的取值范圍是.選A.
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系xOy中,直線l經過點P(2,0),其傾斜角為,在以原點O為極點,x軸非負半軸為極軸的極坐標系中(取相同的長度單位),曲線C的極坐標方程為.
(Ⅰ)若直線l與曲線C有公共點,求傾斜角的取值范圍;
(Ⅱ)設M(x,y)為曲線C上任意一點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某地區(qū)2007年至2013年農村居民家庭純收入y(單位:千元)的數(shù)據(jù)如下表:
(1)求關于的線性回歸方程;
(2)利用(Ⅰ)中的回歸方程,分析2007年至2013年該地區(qū)農村居民家庭人均純收入的變化情況,并預測該地區(qū)2015年農村居民家庭人均純收入.
附:回歸直線的斜率和截距的最小二乘法估計公式分別為:
,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某花店每天以每枝5元的價格從農場購進若干枝玫瑰花,然后以每枝10元的價格出售,如果當天賣不完,剩下的玫瑰花作垃圾處理.
(Ⅰ)若花店一天購進17枝玫瑰花,求當天的利潤(單位:元)關于當天需求量(單位:枝, )的函數(shù)解析式.
(Ⅱ)花店記錄了100天玫瑰花的日需求量(單位:枝),整理得下表:
以100天記錄的各需求量的頻率作為各需求量發(fā)生的概率.
(1)若花店一天購進17枝玫瑰花, 表示當天的利潤(單位:元),求的分布列及數(shù)學期望;
(2)若花店計劃一天購進16枝或17枝玫瑰花,以利潤角度看,你認為應購進16枝好還是17枝好?請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】把長和寬分別為和2的長方形沿對角線折成的二面角,下列正確的命題序號是__________.
①四面體外接球的體積隨的改變而改變;
②的長度隨的增大而增大;
③當時,長度最長;
④當時,長度等于.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在幾何體中,四邊形為矩形,四邊形為梯形, ,平面與平面垂直,且.
(1)求證: 平面;
(2)若,且平面與平面所成銳二面角的余弦值為,求的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】無窮數(shù)列滿足: 為正整數(shù),且對任意正整數(shù), 為前項, , , 中等于的項的個數(shù).
(Ⅰ)若,請寫出數(shù)列的前7項;
(Ⅱ)求證:對于任意正整數(shù),必存在,使得;
(Ⅲ)求證:“”是“存在,當時,恒有 成立”的充要條件。
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com