【題目】已知f(x)=3x+m3﹣x為奇函數(shù).
(1)求函數(shù)g(x)=f(x)﹣ 的零點(diǎn);
(2)若對(duì)任意t∈R的都有f(t2+a2﹣a)+f(1+2at)≥0恒成立,求實(shí)數(shù)a的取值范圍.
【答案】
(1)解:∵f(x)是奇函數(shù),∴f(0)=0,
解得:m=﹣1,
∴f(x)=3x﹣3﹣x,令g(x)=0,即3x﹣3﹣x﹣ =0,
令t=3x,則t﹣ ﹣ =0,
即3t2﹣8t﹣3=0,解得:t=3或t=﹣ ,
∵t=3x≥0,∴t=3即x=1,
∴函數(shù)g(x)的零點(diǎn)是1;
(2)解:∵對(duì)任意t∈R的都有f(t2+a2﹣a)+f(1+2at)≥0恒成立,
∴f(t2+a2﹣a)≥﹣f(1+2at)對(duì)任意t∈R恒成立,
∵f(x)在R是奇函數(shù)也是增函數(shù),
∴f(t2+a2﹣a)≥﹣f(﹣1﹣2at)對(duì)任意t∈R恒成立,
即t2+a2﹣a≥﹣1﹣2at對(duì)任意t∈R恒成立,
即t2+2at+a2﹣a+1≥0對(duì)任意t∈R恒成立,
∴△=(2a)2﹣4(a2﹣a+1)≤0,
∴a≤1,實(shí)數(shù)a的范圍是(﹣∞,1].
【解析】(1)根據(jù)函數(shù)的奇偶性得到f(0)=0,求出m的值,從而求出f(x)的解析式,令g(x)=0,求出函數(shù)的零點(diǎn)即可;(2)根據(jù)函數(shù)的奇偶性和單調(diào)性,問(wèn)題轉(zhuǎn)化為t2+2at+a2﹣a+1≥0對(duì)任意t∈R恒成立,根據(jù)二次函數(shù)的性質(zhì)求出a的范圍即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,已知射線OA:x﹣y=0(x≥0),OB:2x+y=0(x≥0).過(guò)點(diǎn)P(1,0)作直線分別交射線OA,OB于點(diǎn)A,B.
(1)當(dāng)AB的中點(diǎn)在直線x﹣2y=0上時(shí),求直線AB的方程;
(2)當(dāng)△AOB的面積取最小值時(shí),求直線AB的方程.
(3)當(dāng)PAPB取最小值時(shí),求直線AB的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a>0,a≠1且loga3>loga2,若函數(shù)f(x)=logax在區(qū)間[a,2a]上的最大值與最小值之差為1.
(1)求a的值;
(2)解不等式 ;
(3)求函數(shù)g(x)=|logax﹣1|的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從某校高一年級(jí)1000名學(xué)生中隨機(jī)抽取100名測(cè)量身高,測(cè)量后發(fā)現(xiàn)被抽取的學(xué)生身高全部介于155厘米到195厘米之間,將測(cè)量結(jié)果分為八組:第一組[155,160),第二組[160,165),…,第八組[190,195),得到頻率分布直方圖如圖所示. (Ⅰ)計(jì)算第三組的樣本數(shù);并估計(jì)該校高一年級(jí)1000名學(xué)生中身高在170厘米以下的人數(shù);
(Ⅱ)估計(jì)被隨機(jī)抽取的這100名學(xué)生身高的中位數(shù)、平均數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】執(zhí)行程序框圖,如果輸入的N的值為7,那么輸出的p的值是( )
A.120
B.720
C.1440
D.5040
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線C:y2=2px(p>0)的焦點(diǎn)為F,A為C上異于原點(diǎn)的任意一點(diǎn),過(guò)點(diǎn)A的直線l交C于另一點(diǎn)B,交x軸的正半軸交于點(diǎn)D,且有|FA|=|FD|,當(dāng)點(diǎn)A的橫坐標(biāo)為3時(shí),△ADF為正三角形
(1)求C的方程
(2)延長(zhǎng)AF交拋物線于點(diǎn)E,過(guò)點(diǎn)E作拋物線的切線l1 , 求證:l1∥l.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知△ABC的頂點(diǎn)A(5,1),B(1,5).
(1)若A為直角△ABC的直角頂點(diǎn),且頂點(diǎn)C在y軸上,求BC邊所在直線方程;
(2)若等腰△ABC的底邊為BC,且C為直線l:y=2x+3上一點(diǎn),求點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= ,若方程f(x)=a有四個(gè)不同的解x1 , x2 , x3 , x4 , 且x1<x2<x3<x4 , 則x3(x1+x2)+ 的取值范圍為( )
A.(﹣1,+∞)
B.(﹣1,1)
C.(﹣∞,1)
D.[﹣1,1]
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四面體ABCD中,AB=CD=2 ,AD=BD=3,AC=BC=4,點(diǎn)E,F(xiàn),G,H分別在棱AD,BD,BC,AC上,若直線AB,CD都平行于平面EFGH,則四邊形EFGH面積的最大值是 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com