【題目】如圖,在四邊形中,,,點(diǎn)在上,且,,現(xiàn)將沿折起,使點(diǎn)到達(dá)點(diǎn)的位置,且與平面所成的角為,
(1)求證:平面平面;
(2)求二面角的余弦值.
【答案】(1)見解析; (2).
【解析】
(1)根據(jù)折疊前后關(guān)系得PC⊥CD,根據(jù)平幾知識(shí)得BE//CD,即得PC⊥BE,再利用線面垂直判定定理得EB⊥平面PBC,最后根據(jù)面面垂直判定定理得結(jié)論,(2)先根據(jù)線面角得△PBE為等腰直角三角形,再取BC的中點(diǎn)O,證得PO⊥平面EBCD,建立空間直角坐標(biāo)系,設(shè)立各點(diǎn)坐標(biāo),列方程組解得各面法向量,根據(jù)向量數(shù)量積得向量夾角,最后根據(jù)向量夾角與二面角關(guān)系得結(jié)果.
(1)證明:∵ABCD,ABBE,∴CD//EB,
∵AC⊥CD,∴PC⊥CD,∴EB⊥PC,且PC∩BC=C,
∴EB⊥平面PBC,
又∵EB平面DEBC,∴平面PBC 平面DEBC;
(2)由(1)知EB⊥平面PBC,∴EB⊥PB,
由PE與平面PBC所成的角為45°得∠EPB=45°,
∴△PBE為等腰直角三角形,∴PB=EB,
∵AB//DE,結(jié)合CD//EB 得BE=CD=2,
∴PB=2,故△PBC為等邊三角形,
取BC的中點(diǎn)O,連結(jié)PO,
∵ PO⊥BC,∴PO⊥平面EBCD,
以O(shè)為坐標(biāo)原點(diǎn),過點(diǎn)O與BE平行的直線為x軸,CB所在的直線為y軸,OP所在的直線為z軸建立空間直角坐標(biāo)系如圖,
則,,
從而,, ,
設(shè)平面PDE的一個(gè)法向量為,平面PEB的一個(gè)法向量為,
則由得,令得,
由得 ,令得,
設(shè)二面角D-PE-B的大小為,則,
即二面角D-PE-B的余弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線在點(diǎn)處的切線斜率為0.
(1)討論函數(shù)的單調(diào)性;
(2)在區(qū)間上沒有零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: 的右焦點(diǎn)為F(2,0),過點(diǎn)F的直線交橢圓于M、N兩點(diǎn)且MN的中點(diǎn)坐標(biāo)為 .
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)直線l不經(jīng)過點(diǎn)P(0,b)且與C相交于A,B兩點(diǎn),若直線PA與直線PB的斜率的和為1,試判斷直線 l是否經(jīng)過定點(diǎn),若經(jīng)過定點(diǎn),請(qǐng)求出該定點(diǎn);若不經(jīng)過定點(diǎn),請(qǐng)給出理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4— 4:坐標(biāo)系與參數(shù)方程
設(shè)極坐標(biāo)系與直角坐標(biāo)系有相同的長度單位,原點(diǎn)為極點(diǎn),軸正半軸為極軸,曲線的參數(shù)方程為(是參數(shù)),直線的極坐標(biāo)方程為.
(Ⅰ)求曲線的普通方程和直線的參數(shù)方程;
(Ⅱ)設(shè)點(diǎn),若直線與曲線相交于兩點(diǎn),且,求的值﹒
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在坐標(biāo)軸上,且經(jīng)過、、三點(diǎn).
(1)求橢圓的方程;
(2)若直線:()與橢圓交于、兩點(diǎn),證明直線與直線的交點(diǎn)在直線上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐P-ABCD中,底面ABCD是邊長為的正方形,平面PAC⊥底面ABCD,PA=PC=
(1)求證:PB=PD;
(2)若點(diǎn)M,N分別是棱PA,PC的中點(diǎn),平面DMN與棱PB的交點(diǎn)Q,則在線段BC上是否存在一點(diǎn)H,使得DQ⊥PH,若存在,求BH的長,若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4—4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,曲線的參數(shù)方程為,其中為參數(shù),在以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,點(diǎn)的極坐標(biāo)為,直線的極坐標(biāo)方程為.
(1)求直線的直角坐標(biāo)方程與曲線的普通方程;
(2)若是曲線上的動(dòng)點(diǎn),為線段的中點(diǎn).求點(diǎn)到直線的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的短軸長為,且離心率為,圓.
(1)求橢圓C的方程,
(2)點(diǎn)P在圓D上,F為橢圓右焦點(diǎn),線段PF與橢圓C相交于Q,若,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間和極值;
(2)若不等式在區(qū)間上恒成立,求實(shí)數(shù)的取值范圍;
(3)求證:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com