【題目】已知橢圓的離心率為,點A為該橢圓的左頂點,過右焦點的直線l與橢圓交于BC兩點,當軸時,三角形ABC的面積為18

求橢圓的方程;

如圖,當動直線BC斜率存在且不為0時,直線分別交直線AB,AC于點M、N,問x軸上是否存在點P,使得,若存在求出點P的坐標;若不存在說明理由.

【答案】 ; 存在,P.

【解析】

由離心率及三角形ABC的面積和a,bc之間的關(guān)系求出橢圓方程;

A的坐標,設(shè)直線BC的方程,及B,C的坐標,進而寫直線AB,AC的方程,與直線聯(lián)立求出MN的坐標,假設(shè)存在P點,是,使,求出P點坐標.

解:由已知條件得,解得;

所以橢圓的方程為;

設(shè)動直線BC的方程為,,

則直線AB、AC的方程分別為

所以點M、N的坐標分別為,

聯(lián)立,

所以;

于是

假設(shè)存在點滿足,則,所以5,

所以當點P時,有

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】

(本題滿分15分)已知m1,直線

橢圓,分別為橢圓的左、右焦點.

)當直線過右焦點時,求直線的方程;

)設(shè)直線與橢圓交于兩點,,

的重心分別為.若原點在以線段

為直徑的圓內(nèi),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】橢圓的焦點是,,且過點

1)求橢圓的標準方程;

2)過左焦點的直線與橢圓相交于兩點,為坐標原點.問橢圓上是否存在點,使線段和線段相互平分?若存在,求出點的坐標,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,過橢圓E的左焦點且與x軸垂直的直線與橢圓E相交于的P,Q兩點,O為坐標原點,的面積為.

1)求橢圓E的方程;

2)點MN為橢圓E上不同兩點,若,求證:的面積為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】

對定義在區(qū)間上的函數(shù),若存在閉區(qū)間和常數(shù),使得對任意的都有,且對任意的都有恒成立,則稱函數(shù)為區(qū)間上的“U函數(shù)。

1)求證:函數(shù)上的“U函數(shù);

2)設(shè)是(1)中的“U函數(shù),若不等式對一切的恒成立,求實數(shù)的取值范圍;

3)若函數(shù)是區(qū)間上的“U函數(shù),求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)若時,討論的單調(diào)性;

2)設(shè),若有兩個零點,求的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】第二屆中國國際進口博覽會于2019115日至10日在上海國家會展中心舉行.它是中國政府堅定支持貿(mào)易自由化和經(jīng)濟全球化,主動向世界開放市場的重要舉措,有利于促進世界各國加強經(jīng)貿(mào)交流合作,促進全球貿(mào)易和世界經(jīng)濟增長,推動開放世界經(jīng)濟發(fā)展.某機構(gòu)為了解人們對“進博會”的關(guān)注度是否與性別有關(guān),隨機抽取了100名不同性別的人員(男、女各50名)進行問卷調(diào)查,并得到如下列聯(lián)表:

男性

女性

合計

關(guān)注度極高

35

14

49

關(guān)注度一般

15

36

51

合計

50

50

100

1)根據(jù)列聯(lián)表,能否有99.9%的把握認為對“進博會”的關(guān)注度與性別有關(guān);

2)若從關(guān)注度極高的被調(diào)查者中按男女分層抽樣的方法抽取7人了解他們從事的職業(yè)情況,再從7人中任意選取2人談?wù)勱P(guān)注“進博會”的原因,求這2人中至少有一名女性的概率.

附:.

參考數(shù)據(jù):

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,點在橢圓C.

1)求橢圓C的標準方程;

2)若直線上C交于A,B兩點,是否存在l,使得點在以AB為直徑的圓外.若存在,求出k的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)有兩個極值點,且.

1)求實數(shù)的取值范圍;

2)若,證明:.

查看答案和解析>>

同步練習冊答案